
Theoretician’s Toolkit Spring 2019

Lecture 6: Semidefinite Programming and MAXCUT

Scribe: Ida Liu, Jiazheng Zhao 4/1/2019

6.1 Introduction

Sometimes it’s not easy to capture a problem using polynmialy sized linear programming, while it’s straight-
forward to write out the constraints and objectives in quadratic equations. This section we are going to
introduce how to use quadratic programming and SDP rounding to solve the max cut problem.

6.2 Semidefinite Programming

6.2.1 Semidefinite Programming

A semidefinite program (SDP) is similar to a linear program in that there is a linear objective function and
linear constraints. In addition, however, a square symmetric matrix of variables can be constrained to be
positive semidefinite. This means that there will n ∗n variables in the form of xij, for 1 ≤ i, j ≤ n, where n is
the dimension of the matrix X. Also, it requires the additional constraint of xij = xji to make X symmetric,
and the constraint X = (xij) � 0 to make X positive semidefinite.

min/max
∑
i,j

ci,jxi,j

subject to
∑
i,j

aijkxij = bk ∀k

xij = xji

X = (xij) � 0

We often express semidefinite programming in the form of vector programming. The variables of vector
programs are vectors vi ∈ Rn, where the dimension n of the space is the number of vectors in the vector
program. The vector program has an objective function and constraints that are linear in the inner product
of these vectors. We write the inner product of vi and vj as vi · vj , or sometimes as vTi vj . Below is an
example of a vector program:

1



Lecture 6: Semidefinite Programming and MAXCUT 2

min/max
∑
i,j

cij(v
>
i vj)

subject to
∑
i,j

aijk(v>i vj) = bk ∀k

vi ∈ Rn ∀i

Semidefinite programming and vector programming are equivalent, because a symmetric X is PSD if and only
if X = V TV for some matrix V . To see this fact, first verify that if a matrix X is symmetric, diagonalizing

of X gives: X = PΣPT = P (Σ)
1
2 (Σ)

1
2 PT = P (Σ)

1
2 (Σ)

1
2
T
PT =

(
P (Σ)

1
2

)(
P (Σ)

1
2

)T
. Setting V to the

transpose of P (Σ)
1
2 gives us the desired form of X = V TV . Also, X = V TV is PSD because for any vector

y, yTXy = yTV TV y = (V y)T (V y) � 0. Therefore, semidefinite programming and vector programming are
equivalent because we can take the solution of one and transform it to the other.

6.2.2 Solving SDP

Given some error bound ε, SDP can be solved in time that is polynomial in size of input and log(1/ε). We are
not going to discuss the details of the algorithm here, and instead assume that SDP can be solved efficiently.

6.3 Example: MAXCUT

6.3.1 Problem Formulation

In this section, we show how to use semidefinite programming to find an improved approximation algorithm
for the maxcut problem. Recall that for this problem, the input is an undirected graph G = (V,E), and
nonnegative weights wij ≥ 0 for each edge (i, j) ∈ E. The goal is to partition the vertex set into two parts, U
and W = V −U , so as to maximize the weight of the edges whose two endpoints are in different parts, one in
U and one in W .

Now we shall come up with a formulation of the maxcut problem. The intuition is that, if an edge crosses
the cut, we will add its weight to the total sum, or else we do not add it to the total sum. Also, we want to
use a variable which label each vertex in some way that indicates which group the vertex belong to. With
these idea in mind, we have the following formulation:

maximize
1

2

∑
(i,j)∈E

wij(1− yiyj)

subject to yi ∈ {−1,+1} i = 1, ..., n.

Lemma 6.1. The program models the maximum cut problem.



Lecture 6: Semidefinite Programming and MAXCUT 3

Proof. Consider the cut U = {i : yi = −1} and W = {i : yi = +1}. Note that if an edge (i, j) is in this cut,
then yiyj = −1, and 1− yiyj = 2; while if the edge is not in the cut, yiyj = 1, and 1− yiyj = 0. Thus

maximize
1

2

∑
(i,j)∈E

wij(1− yiyj)

will include the weight of the edges that are in the cut, and exclude the weights of those that are not in the
cut. Hence finding the setting of the yi to ±1 that maximizes this sum gives the maximum-weight cut.

Again, this problem formulation is NP-complete. Recall that linear programming can be used to approximate
Integer Linear Programs (ILP): we first relax ILP into LP, solve LP problem, and then round the result into
integers using some rounding scheme. Similarly, to give an approximation of max cut, we will first relax it
into vector programming and then round the result.

Now let’s consider a relaxation of the problem formulation using vector programming:

maximize
1

2

∑
(i,j)∈E

wij(1− vi · vj))

subject to vi · vi = 1, i = 1, ..., n,

vi ∈ <n, i = 1, ..., n,

This program is a relaxation of the previous formulation since we can take any feasible solution y and produce
a feasible solution to this program of the same value by setting vi = (yi, 0, 0, ..., 0): clearly vi · vi = 1 and
vi · vj = yiyj for this solution. Since any solution y is also a solution for VP, the value of an optimal solution
for VP will always be at least as good as the optimal solution for max cut.

Now we shall present a rounding scheme in the next section that will achieve 0.878-approximation.

6.3.2 Rounding SDP

If we solve this SDP, we will get n length 1 vectors in Rn, so now we need to somehow map these vectors
to a {0, 1} solution. Note that if we draw a random vector r such that each entry of r follows N (0, 1) and
take its direction, it’s uniformly distributed the n-dimensional unit sphere. We will used this vector r for our
randomized rounding.

First, we sample r as we discussed above. Then for each vi from the SDP solution: set yi = 1 if vTi r > 0,
and set yi = 0 if vTi r ≤ 0. Intuitively, this random vector r gives a hyperplane across the center of the unit
sphere. and everything on one side of the plane will be assigned to one side of the cut.

Theorem 6.2. This randomized rounding is a 0.878 approximation.

Before we proceed to proof, here are some useful fact for the analysis:

Lemma 6.3. Probability that any edge (i, j) falls in the cut is
arccos(vTi vj)

π
.



Lecture 6: Semidefinite Programming and MAXCUT 4

Figure 6.1: inequality for lemma 6.4

Since the angle between two unit vectors vi and vj is vTi vj , the probability that the hyperplane falls in

between them, which is the probability of (i, j) being in the cut, is
arccos(vTi vj)

π
.

Lemma 6.4. For x ∈ [−1, 1],
1

π
arccos(x) ≥ 0.878 · 1

2
(1− x)

This is simply an algebraic fact. Figure 6.1 shows that the inequality holds.

Now we can proceed the analysis of approximation ratio of the randomized rounding.

Proof. let Xij be an indicator random variable that is 1 if (i, j) is in the cut and vice versa. define
W =

∑
(i,j)∈E wijXij . Therefore the expected value of max cut produced by this rounding algorithm is:

E[W ] =
∑

(i,j)∈E

wijXij =
∑

(i,j)∈E

wij Pr(edge (i,j) in cut) =
∑

(i,j)∈E

wij ·
1

2
arccos(vTi vj)

Now we plug in lemma 6.4:

E[W ] ≥ 0.878
∑

(i,j)∈E

wij
1

2
(1− (vTi vj)) = 0.878 ·VP-OPT ≥ 0.878 ·OPT


	Introduction
	Semidefinite Programming
	Semidefinite Programming
	Solving SDP

	Example: MAXCUT
	Problem Formulation
	Rounding SDP


