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Lecture 2: The Probabilistic Method

Scribe: Nate Armstrong 2/11/19

The probabilistic method is a powerful tool generally used in non-constructive proofs of existence. A non-
constructive proof of existence is a proof of the existence for some mathematical object which does not
actually provide a construction of the object. This method words as follows. To show that an object with
a specific property exists, we randomly sample from an appropriate collection of objects and show either
that sample has the desired property with positive probability, or that the expectation of the sample has
that property. In both cases, this implies the existence of at least one such object with the property. In
addition to proving existence, the probabilistic method can lead to efficient randomized algorithms, which
can sometimes be derandomized.

In this lecture, we discuss applications of the probabilistic method, and the proof techniques used. There is
a review section on the union bound, expectation of a random variable, Markov’s inequality, and Little-O
notation.

2.1 Relevant Probability and Background

2.1.1 The Union Bound

The union bound, also known as Boole’s inequality, is a useful (and loose) inequality about the probability of
the union of many events. It can be derived from the inclusion-exclusion principle:

Definition 2.1 (Inclusion-Exclusion Principle). The inclusion-exclusion principle for 2 sets A,B is
defined as

|A ∪B| = |A|+ |B| − |A ∩B|.

From this definition, we see that |A ∪B| ≤ |A|+ |B|. By extending this idea through induction, we arrive at
the union bound.

Theorem 2.2 (Union Bound). For sets A1, A2, . . . , An,∣∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣∣ ≤
n∑

i=1

|Ai| .

The union bound also applies to probabilities of events in the natural way, and states that

Pr

(
n⋃

i=1

Ai

)
≤

n∑
i=1

Pr (Ai) .

We use the union bound in our discussion on Ramsey and chromatic numbers of graphs.
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2.1.2 Expectation of a Random Variable

The expectation of a random variable X differs in definition based on if X is a continuous or discrete random
variable (or a single generalized definition in measure theory), but in all cases can be interpreted as the
probability of X taking on a certain value multiplied by that value. Basically, it is the ’average’ value of the
random variable. In the discrete case, the expectation is written as

E(X) =
∑
x∈Ω

x · Pr(X = x)

or in the continuous case where the probability density function of X is given by f , as

E(X) =

∫
R
xf(x) dx.

One of the most important properties of the expectation of a random variable is that it is linear. In other
words, it means that the expectation of a random variable has the following properties:

• E[cX] = cE[X] for all constants c and random variables X.

• E[X + Y ] = E[X] + E[Y ] for all random variables X and Y .

In this lecture, linearity of expectation is used in max cut, independent set, and the girth/chromatic number
of graphs.

Indicator Variables

A particular type of random variable that comes up frequently when working with expectation in the context
of the probabilistic method is an indicator variable. It will generally occur when we are interested in the
number of times that some event P occurs in a set A. For an object a in a set A, we define Xa to be 1 if P
occurred for object a, and 0 otherwise. Note that E[Xa] = Pr(Xa = 1) · 1 + Pr(Xa = 0) · 0 = Pr(Xa) = 1. It
is common to sum all the indicator variables into a larger variable X =

∑
a∈A Xa, and then use linearity of

expectation to sum the probabilities of the individual variables being 1.

2.1.3 Markov’s Inequality

Markov’s inequality is a bound for non-negative random variables. Given a non-negative random variable X
and a > 0,

Pr(X ≥ a) ≤ E[X]

a
.

Markov’s inequality is used in the graph girth example.

2.1.4 Little O Notation

Given two sequences (an) and (bn), we write that an = o(bn) if

lim
n→∞

an
bn

= 0.
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It is important to note that an = o(1) means that limn→∞ an = 0. This is relevant in the section on graph
girth and chromatic number.

2.2 Ramsey Theory

Ramsey theory is a branch of combinatorics that studies where order can appear in a random object. There
is a nice result on Ramsey theory that can be proved easily using the probabilistic method.

Definition 2.3 (Ramsey (Diagonal) Number). The k-th Ramsey number, Rk, is the smallest number n
such that any 2-coloring of the edges of the complete graph on n vertices, Kn, must contain a monochromatic
k-clique.

For example, R3 = 6, as K6 cannot be 2-colored without creating a monochromatic triangle.

It is known that Ramsey numbers exist for all k and that the upper bound for Rk is 22k−3. We now prove a
lower bound for Rk using the probabilistic method.

Theorem 2.4. Rk > 2k/2.

Proof. Let n = 2k/2. We show that there exists a 2-coloring of the complete graph Kn, such that there is no
monochromatic k-clique. Randomly color each edge of Kn red or blue with probability 1/2, independently.
Let C be any k-clique in the graph Kn. Then,

Pr[C is monochromatic] = (Number of colors) Pr[C is that color]

= 2 · 2−(k
2)

= 21−(k
2).

Since the total number of k-cliques in Kn is
(
n
k

)
, by the union bound, we get

Pr[Kn has a monochromatic k-clique] ≤
(
n

k

)
· Pr[a given k-clique is monochromatic]

=

(
n

k

)
· 21−(k

2)

≤ nk

k!
· 21−(k

2).

For n = 2k/2, we have

Pr[Kn has a monochromatic k-clique] ≤
(
2k/2

)k
k!

· 21− k2−k
2

=
1

k!
· 2

k+2
2

< 1 for k ≥ 3.
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So, there is a nonzero probability a randomly-colored Kn does not have a monochromatic clique, so there
exists some coloring without one.

Ramsey numbers have been the topic of extensive study in combinatorics. For this reason, it may come as a
surprise that this bound provided by a random selection is almost as strong as bounds produced by more
sophisticated deterministic methods.

2.3 Max Cut

We consider the max cut problem, which is the problem of partitioning the vertices of a graph G into two
parts P1, P2 such that the number of edges crossing the partition is maximized. We denote the edges of G
by E, and the vertices by V . This is a well-known NP-complete problem. Even so, using the probabilistic
method, we can give a lower bound on the size of the maximum cut.

Theorem 2.5. For any graph G = (E, V ), there exists a cut containing at least |E|2 edges.

Proof. We pick a random partition, assigning each vertex to P1 or P2 independently with probability 1
2 . For

each edge e ∈ E, define an indicator variable Xe as 1 if e is cut, and 0 otherwise. Let’s begin by considering
the expectation of a single indicator variable Xe.

E[Xe] = Pr[e is cut] = Pr[the endpoints of e are in different partitions] =
1

2
.

Now, let X be a variable denoting the number of cut edges of a certain partition, and note that X =
∑

e∈E Xe.
By linearity of expectation,

E[X] =
∑
e∈E

E[Xe] =
|E|
2

.

Here, we can use properties of the probabilistic method. Because the expectation of X is |E|/2, there must
exist at least one partition such that X ≥ |E|/2.

2.4 Independent Set

In a graph G, a subset of vertices S ⊂ V is said to be an independent set if no two vertices u, v ∈ S are
adjacent in G. The problem of determining the size of the largest independent set in G is NP-hard. However,
we can once again apply the probabilistic method to establish a good lower bound on the size of the maximum
independent set for any graph.

Theorem 2.6. Any graph G = (V,E) contains an independent set S ⊂ V such that |S| ≥
∑

v∈V
1

deg(v)+1

where deg(v) is the number of vertices adjacent to v in G.
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Proof. Assign a random weight wv to each vertex v ∈ V , choosing the weights independently and uniform
from the interval [0, 1]. Call v ∈ V a local minimum if wv < wu for each vertex u adjacent to v. Since no
two adjacent vertices can be local minima, the set of local minima form an independent set. Additionally,
any vertex among v and its neighbors are equally likely to have minimum weight. Therefore, for each v, the
probability that v is a local minimum is 1

deg(v)+1 .

Now, we again use indicator variables for each vertex. Let X be the number of local minima, and Xv be an
indicator random variable for the event that v is a local minimum. By linearity of expectation,

E[X] =
∑
v∈V

E[Xv] =
∑
v∈V

1

deg(v) + 1
.

Therefore, there must be at least one independent set of that size.

2.5 Graphs with large girth and chromatic number

The following is a result from Erdös in 1959. Let G be a graph with vertices V and edges E.

Definition 2.7. The girth of G is the length of the shortest cycle in G.

For example, a connected 2-regular graph of size n has girth n for n ≥ 2. A complete graph of any size ≥ 3
has girth 3. A graph representing a grid where the intersections are vertices, with the lines edges, has girth 4.

Definition 2.8. The chromatic number of G is the minimum number of colors needed to color the vertices
of G such that no two adjacent vertices have the same color.

It has been proved that the chromatic number of a planar graph is at most 4. The chromatic number of the
complete graph on n vertices is n.

It should seem natural that a graph with a large girth should have a small chromatic number. It should be
surprising, then, that for any girth and chromatic number, there exist graphs with at least that large of a
girth and chromatic number. The proof is, once again, the probabilistic method.

Theorem 2.9. For any positive integers k, l, there exists a graph with girth ≥ l and chromatic number ≥ k.

Proof. Pick a random graph G from G(n, p), where n is the number of vertices and each of the
(
n
2

)
possible

edges is included independently with probability p. We will choose p = n1/l−1. This results in relatively
sparse (low ratio of edges to vertices) random graphs.

Let X be the number of cycles of length < l in G. Note that if X = 0, then the girth of G is at least l, which
is what is desired. The number of possible cycles of length i is(

n

i

)
· i!

2i

since for every subset of size i of the n vertices, there are i! possible cycles. However, as direction and starting
position do not matter, we divide by 2i to get the number of possible cycles. A cycle is only present if all
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edges are present, which happens with probability pi. Using this, we can now look at E[X]. We use the
indicator variable argument seen previously to find

E[X] =

l−1∑
i=3

(
n

i

)
· i!

2i
· pi

≤
l−1∑
i=3

ni/l

2i

= o(n),

The second expression follows from the fact that
(
n
i

)
· i! = n!

(n−i)! ≤ ni and nipi = nipi = nini/l−i = ni/l. The

last expression means that the expectation of X, thought of as a sequence in terms of n, is of an order of
growth smaller than n. We can check this by seeing that

l−1∑
i=3

ni/l

2i
≤ n

l−1
l

l−1∑
i=3

1

2i

which goes to 0 when divided by n as n grows large. Thus, it is in little-oh of n. By Markov’s inequality,

Pr(X ≥ n/2) ≤ o(n)

n/2
∈ o(1).

Therefore, the probability that G contains n/2 or more cycles of length l goes to 0 as n gets large.

We now consider the chromatic number. We can lower bound the number of colors k as

k ≥ |V |
max. independent set size

as the set of vertices that receive any given color must form an independent set.

Let Y be the size of the maximal independent set in G. Then, by the union bound,

Pr(Y ≥ y) ≤
(
n

y

)
· (1− p)(

y
2)

≤ (n · exp(−p(y − 1)/2))
y

∈ o(1) if we set y =
3

p
lnn

The second expression follows from the fact that
(
n
y

)
≤ ny and the inequality 1 + x ≤ ex.

Putting the above calculations together, by taking n large enough we can ensure that the probabilities
Pr(X ≥ n/2) and Pr(Y ≥ 3

p lnn) are both less than 1/2, so by a union bound Pr(X ≥ n/2 ∪ Y ≥ 3 lnn
p ) < 1.

Taking a graph that follows these properties, which we have now shown exists, we can remove one vertex
from every cycle of length < l, resulting in a graph G′ such that

(i) G′ has girth ≥ l

(ii) G′ has ≥ n
2 vertices
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(iii) G′ has maximum independent set size < 3
p lnn.

Therefore, G′ has chromatic number ≥ n/2
3 lnn

p

= n1/l

6 lnn →∞ as n→∞. So by again making n larger, we can

make this at least k, as desired.

Note that, unlike in previous proofs, the graph we have shown to exist is not the graph with the desired
property. Instead, we have had to take this graph that we can show exists, and then directly modify in order
to complete our proof.

2.6 (Extra) Lovász Local Lemma

When working with the probabilistic method, we often want to show that we can avoid certain conditions
with probability greater than 0. Let the conditions be denoted by E1, . . . , En ⊂ Ω. Notationally, we want that

Pr(

n⋂
i=1

Ei) > 0.

If
∑

i Pr(Ei) < 1, then we can use the union bound to prove this. However, this is a very strong condition, as
the sum can be much larger than 1 even if there is a chance of avoiding all conditions. The best case scenario
is when the events are all independent; in this case, no matter what the sum of probabilities is, if all events
have p < 1 then there is some probability that they can all not occur. The Lovasz local lemma takes this
notion further: it tries to find a similar notion for events that are “mostly independent.”

We first define a notion of mutual independence.

Definition 2.10 (Mutual Independence). For all integers n > 0, define [n] := {1, . . . , n}. Given events
E1, . . . , En ⊂ Ω and a subset J ⊂ [n], the event Ei is said to be mutually independent of {Ej : j ∈ J} if for
all choices of disjoint subsets J1, J2 ⊂ J ,

Pr

Ei ∩ ⋂
j1∈J1

Ej1 ∩
⋂

j2∈J2

Ej2

 = Pr(Ei) · Pr

 ⋂
j1∈J1

Ej1 ∩
⋂

j2∈J2

Ej2



Intuitively, this means that Ei is independent from every possible combination of events occurring. We can
use this notion to define the (symmetric) Lovasz local lemma.

Theorem 2.11 (Lovasz Local Lemma). Suppose p ∈ (0, 1), d ≥ 1, and E1, . . . , En are events such that
Pr(Ei) ≤ p for all i. If each Ei is mutually independent of some set of all but d other events Ej, and
ep(d + 1) ≤ 1, where e is Euler’s number, then Pr(∩ni=1E i) > 0.

In the interest of brevity, we do not prove the Lovasz local lemma. However, we introduce it as it is an
extremely powerful tool for probabilistic method results. Especially of note, and the reason for the term
‘local’, is the fact that the lemma depends only on the degree of interconnectedness of the events, d, and not
on the number of events n.
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2.6.1 Example

Suppose 11n points are placed around a circle and colored with n different colors such that each color is
applied to exactly 11 points.

Lemma 2.12. In any such coloring, there must be a set of n points containing one point of each color but
not containing any pairs of adjacent points.

Proof. We construct a set by picking a point of each color randomly, with all points equally likely (having
probability 1/11) to be chosen. The 11n events we want to avoid correspond to the 11n pairs of adjacent
points on the circle. For each pair, the odds of picking both points in that pair is at most 1/121 (exactly
1/121 if the two points are of different colors, and 0 otherwise). Thus, we take p = 1

121 .

Whether a given pair of points is chosen depends only on the colors of those points, and not on the collection
of points chosen in the other n− 2 colors. Thus, the event “a and b are both chosen” is dependent only on
those pairs of adjacent points which share a color with either a or b.

There are 21 pairs other than (a, b) which include the same color as a, and the same number for b. In the worst
case scenario, they are disjoint. In this case, there are at most 42 pairs of points whose selection can affect the
probability of (a, b) being selected. We thus use d = 42. This gives ep(d + 1) = e(1/121)(42 + 1) ≈ .97 < 1.
By the local lemma, there is thus a positive probability that none of these events occur, so a set satisfying
our conditions must exist.
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