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Linear Algebra

It will be taken for granted that you are familiar with basic linear algebra concepts like vectors, matrices/linear
transformations, vector spaces, inner product spaces, and so on. We will begin our exploration of Spectral
Graph Theory by reviewing the spectral theorem. Hopefully, you have encountered this at least once before.
Recall, that for a matrix M ∈ Rn×n, a vector v ∈ Rn is an eigenvector if:

Av = λv

For some λ ∈ R. The λ, in this case is an eigenvalue of M . A square matrix M is said to be diagonalizable,
if it has n linearly independent eigenvectors. Note that if M has n distinct, eigenvalues, then it must be
diagonalizable, as distinct eigenvalues must correspond to linearly independent eigenvectors. The converse,
however, is not necessarily, true. Consider the case where M = I.

Theorem 1.1. (Real Spectral Theorem) If a matrix M ∈ Rn×n is symmetrical, then it is diagonalizable
with n orthogonormal eigenvectors.

Note that I say real because it’s impossible to study the spectral theorem without talking about complex
numbers, but since this is not a linear algebra reading group, I won’t mention it here.

Spectral Decomposition

So why is it so important that M has orthonormal eigenvectors? Recall that n orthonormal vectors form a
basis of Rn. This means that any vector x ∈ Rn can be expressed as a linear combination of the eigenvectors
of M .

x =

n∑
i=1

< x, vi > vi

If we think of M as a linear transformation, we can decompose M as follows:

Mx = M(

n∑
i=1

< x, vi > vi)

=

n∑
i=1

λi < x, vi > vi

M =

n∑
i=1

λiviv
>
i

1
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Thus, we can think of M as simply stretching the axis of x corresponding to vi by a λi amount. We can
express the summation of rank one matrices above in a more compact way as follows:

M = PDP>

Where D is the matrix with λi’s down the diagonal, and P is the matrix with columns v1, ...vn. Note that
P>P = I.

Positive Semi-definite (PSD) Matrices

A symmetric matrix M is said to be PSD, if ∀x ∈ R, x>Mx ≥ 0 and x>Mx = 0 iff x = 0. There are two
other conditions that are equivalent to M being PSD:

• all eigenvalues of M are non-negative

• M = UU> for some matrix U .

Proof. Suppose ∀x ∈ Rd, x>Ax = 0. If A has a negative eigenvalue, that is, ∃v ∈ Rd such that Av = λv, λ <
0, then v>Av = λ||v||22 < 0, which is a contradiciton. Thus, all eigenvalues of A are non-negative. Now
suppose all eigenvalues of A are non-negative. This means A = PDP> and D1/2 exists, as each diagonal
entry of D has a real square root. Let U = PD1/2. Clearly, A = UU>. And finally, ∀x ∈ R, we have
x>Ax = x>UU>x = ||Ux||22 ≥ 0.

Note that if M is symmetric and PSD, then the operation:

< x, y >M= x>My

is an inner product. Verification of this is left as an exercise to the reader.

Variational characterization of eigenvalues

For a symmetrical matrix, M , we define the Rayleigh quotient of a vector x, RM (x) as follows:

RM (x) =
x>Mx

x>x

We now reach one of the most useful results: Suppose we sort the eigenvalues of M so that λ1 ≤ λ2...λn

λk = min
U : dimU=k

max
x∈U

x>Mx

x>x

Consider the dimension k subspace, span{v1, v2, ...vk}. First, I claim that the maximum value of the Rayleigh
quotient in this subspace is λk
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Proof. Let x ∈ span{v1, ...vk}. We have:

x>Mx = x(

k∑
i=1

< vi, xi > vi)

= (

k∑
j=1

< vj , x > vj)>(

k∑
i=1

λi < vi, xi > vi)

=
∑
i,j≤k

λiλj < vi, x >< vj , x >< vi, vj >

=

k∑
i=1

λi < vi, x >
2

≤ λk
k∑
i=1

< vi, x >
2

= λk < x, x >

Thus, it follows that λk is the best we can do in this subspace.

Next, I claim that all k−dimensional subspaces contain a vector with Rayleigh quotient at least λk.

Proof. Suppose by contradiction, that there is some k dimensional subspace U such that the Rayleigh
quotients of all vectors is less than λk. This means, it cannot contain vn, vn−1, ...vk. However, this means
that there is at most k − 1 linearly independent vectors in U , which is a contradiction.

An immediate result of this is that

λk = max
U :dimU=n−k+1

min
x∈U

x>Mx

Which follows from that fact that −λk is the n− k + 1th largest eigenvalue of −M and so

−λk = min
U :dimU=n−k+1

max
x∈U

x>Mx

Graphs and Matrices

Let G = (V,E) be an undirected graph with n vertices and m edges. First, we define the adjacency matrix,
A, as an n× n matrix with rows and columns corresponding to vertices such that:

Au,v =

{
1 (u, v) ∈ E
0 otherwise

Notice A is symmetrical, which means that, it is orthogonally diagonalizable. For now, however, it is more
convienient for us to work with another symmetrical matrix, called the Laplacian matrix. Let D be a
diagonal matrix such that Dv,v = deg(v). We define the Laplacian, L, as follows:

L = D −A
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One of the reasons the Laplacian matrix is important is that it is very useful for solving graph partitioning
problems. Suppose, we wanted a concise way of representing a cut, S ⊆ V , in a graph. Let x ∈ Rn be a
vector such that:

xv =

{
1 v ∈ S
0 otherwise

The numerator of the Rayleigh quotient of x with respect to the Laplacian is exactly equalled to the number
of edges across the cut S|V − S. I will denote the number of edges across this cut as ∂(S, V − S):

Proof. We can express the number of edges across the cut as
∑
u,v∈E(xu − xv)2, since (xu − xv)2 = 1 iff u

and v are in the same different partitions. Thus, we have:

∂(V, V − S) =
∑

(u,v)∈E

(xu − xv)2

=
∑

(u,v)∈E

x2u − 2xuxv + x2v

=
∑
v∈V

deg(v)x2v −
∑

(u,v)∈E

2xuxv

=
∑
v∈V

deg(v)x2v −
∑
u

∑
v

xuxv ∗ 1{(u, v) ∈ E}

= x>Dx− x>Ax
= x>Lx

Since for all x ∈ Rn x>Lx =
∑

(u,v)∈E(xu − xv)2 ≥ 0, L is PSD. Another result of this is that ~1 is always in
the nullspace of L, as the partition that in includes every vertex obviously doesn’t have any cut edges. Thus,
we know that the smallest eigenvalue of L is 0, with eigenvector ~1. Moreover, we have the following result:

Theorem 1.2. If λ1 ≤ λ2 ≤ ...λn are the eigenvalues of L, the λk = 0 iff G has at least k connected
components.

Proof. Suppose that G has k connected components, C1, C2, ...Ck ⊆ V . Recall that

λk = min
U :dimU=k

max
x∈U

x>Lx

x>x

Since L is PSD, if there exists any k-dimensional subspace where every vector has a Rayleigh quotient of 0,
then λk must be 0. How do we find such a subspace? Simple. Define c1, ...ck such that ci[v] = 1 if v ∈ Ci
and 0 otherwise. Each ci corresponds to a partition with no cut edges, since one connected component is on
one side of the partition and the rest of the graph is on the other side. Also, c1, ...ck are clearly linearly inde-
pendent, as non of them are non-zero in the same entry. Thus, if

∑k
i=1 aici = 0, it must be that ai = 0 for all i.

Now, suppose that λk = 0. This means that there exists a k-dimensional subspace, U , where every
vector in U has Rayleigh quotient 0. This means for any x ∈ U , we must have:

x>Lx =
∑

(u,v)∈E

(xu − xv)2 =
∑
u

∑
v

(xu − xv)2~1{(u, v) ∈ E} = 0
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This means that for u, v ∈ V ×V , either xu = xv or (u, v) /∈ E. If u and v are in the same connected component,
then it must be that xu = xv. Thus, U = {x ∈ Rn : u = v if they are in the same connected component}.
Since dimU = k there must be at least k connected components.

Based on the previous theorem, we clearly see that 1) every Laplacian has at least one vector in it’s nullspace,
namely the all 1’s vector, and 2) the dimension of the nullspace of the Laplacian is equalled to the number of
connected components.

Normalized Laplacian

Let G = (V,E) be a d-regular graph. That is, each vertex has degree d. Define the normalized Laplacian

LN =
1

d
L

.

Theorem 1.3. As if I haven’t abused notation enough, let λ1 ≤, ...λn be the eigenvalues of LN . λN = 2 iff
G has at least one bipartite connected component.

Proof. First, we express the Rayleigh Quotient in terms of LN as follows:

x>LNx

x>x
= x>(I − 1

d
A)x

= x>x− 1

d
x>Ax

= x>x− 1

d

∑
u

∑
v

xuxv1{(u, v) ∈ E}

= x>x− 1

d

∑
(u,v)∈E

2xuxv

= x>x− 1

d

∑
(u,v)∈E

(xu + xv)
2 − x2u − x2v

= x>x+
1

d
(
∑
v∈V

deg(v)x2v)−
1

d

∑
(u,v)∈E

(xu + xv)
2

= 2x>x− 1

d

∑
(u,v)∈E

(xu + xv)
2

Thus, we have:

λn = max
x

x>LNx

x>x

= max
x

1

x>x
(2x>x− 1

d

∑
(u,v)∈E

(xu + xv)
2)

= 2−min
x

∑
(u,v)∈E(xu + xv)

2

x>x
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The term
∑

(u,v)∈E(xu + xv)2 goes to 0 iff ∀(u, v) ∈ E, xu = −xv or xu, xv = 0. Since, we do not allow x = 0,

let A = {v : xv > 0} and B = {v : xv < 0}. If there is an edge (u, v) with only one endpoint in A ∪B, or
both endpoints in the same set, it must be that (xu + xv)2 > 0. Thus, we see that in order for λn = 2, A∪B
is bipartite, and vise versa.

It turns out that this condition holds even when G is not d-regular. However, for non-regular graph, we must
define the normalized Laplacian, differently.:

LN = D−1/2LD−1/2

This is valid if we assume there are no lone vertices, which is reasonable, as we can simply remove them.
Now, consider the new Rayleigh quotient, defined as follows:

R∗LN
(x) = RLN

(D1/2x) =
x>Lx

x>Dx
=

∑
(u,v)∈E(xu − xv)2∑

v deg(v)xv

Since D1/2 is invertible, if {x1, x2, ...xk} is the basis of some k-dimensional subspace, then {D1/2x1, ...D
1/2xk}

is also k-dimensional. Thus, it still have that:

λk = min
U :dimU=k

max
x∈U

R∗LN
(x)

This means we can apply the same argument as before and show that:

λn = max
x

x>Lx

x>Dx

= max
x

1

x>Dx
(x>Dx− x>Ax)

= max
x

1

x>Dx
(2x>Dx−

∑
(u,v)∈E

(xu + xv)
2)

= 2−min
x

∑
(u,v)∈E(xu + xv)

2

x>x

Spectral Graph Drawing

Consider the problem of drawing a graph in 2 or 3 dimensions in a way that we can visualize nicely. Ideally,
we would want to stretch the edges as little as possible. Moreover, vertices that are well connected should
be placed closed to each-other. One way to achieve this is to treat each edge as a spring that connects two
vertices. The amount of energy it takes to stretch the string is the square of the distance between the vertices.
Suppose we want to draw our graph in R2. This means we must map each vertex, v to a point in f(v) ∈ R2.
To minimize the total stretch over the edges, we want:

min
f

∑
u,v∈E

||f(u)− f(v)||22 = min
x,y∈Rn

∑
u,v∈E

(x(u)− x(v))2 + (y(u)− y(v))2

= min
x,y

x>Lx+ y>Ly

To avoid mapping everything to 0, we resitrct x and y such that ||x||2 = ||y||2 = 1. To avoid mapping
everything to 1√

n
~1, or mapping x and y to the same points (in which case everything would lie along a line),

we further add the restrictions that x, y ⊥ ~1 and y ⊥ x. This means that x and y are the second and third
eigenvectors of the normalized Laplacian. Thus, the eigenvectors of the Laplacian can give use nice ways of
representing graphs visually.
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Computing Eigenvalues and Eigenvectors

In general, computing eigenvalues exactly requires finding the roots of degree-n polynomials, which is a hard
task. However, eigenvalues and eigenvectors for PSD matrices can be accurately approximated through a very
simple method, called the power method. Suppose M is PSD, and we want to compute λn, the maximum
eigenvalue of M .

1. pick a random vector x ∈ {−1, 1}n

2. compute Mx

3. normalize x, and repeat

The output, xk, after k iterations, will have a Rayleigh quotient close to λn. Specifically, we have the
following:

Theorem 1.4. With probability at least 3/16, x>kMx ≥ λn(1−ε)
1+4n(1−ε)2k

This means that for k = log1/(1−ε)(n/ε), x
>
kMx = λn(1−O(ε)). To understand this from an inuitive level,

consider the fact that any x ∈ Rn can be expressed as:∑
i

< vi, x > vi

which means:
Mkx =

∑
i

λki < vi, x > vi

Clearly, as k increases, the largest term, λkn < vi, x > vi will dominate, and the resulting vector will point
closer and closer in the vn direction. Once we can vn, we can then approximate vn−1 by applying the power
method on x− < x, vn > vn.


