Week 1/13-1/19 Exercise

1. Prove that it is undecidable whether a given program computes a total function. Hint: show that it is undecidable whether a program computes the identity function, and derive the more general result from this.
2. List the first 10 elements of D as given in Lemma 5.7.1.
3. Show that it is not necessary to assume that every memory cell is initialized to 0 .
4. Show that function $x+1$ is computable by a Turing Machine, if given as input the binary representation of x.
5. Show that a Turing Machine can, given input of form $x B y$ where $y, x \in\{0,1\}^{*}$, decide whether $x=y$. An alphabet larger than $\{0,1, B\}]$ may be assumed, if convenient.
6. Show that a counter machine can compute function $x+y, 2 \cdot x, x / 2$.
