Beyond Worst Case Analysis Fall 2018

Lecture 9: Balcan-Blum-Gupta Stability

Scribe: James Hulett 11/26/2018

9.1 Introduction

In the last meeting, we discussed one definition of stability, due to Bilu and Linial, which considered adversarial
perturbations of the input. Today, we discuss a somewhat different definition, due to [BBGI:

Definition 9.1. Let ¢ > 1 and € > 0 be fixed, and let ® be the objective function of some minimization
problem. We say that an instance of that minimization problem is (c,€)-stable if all possible solutions S
satisfying ®(S) < ¢- ®(S*) also satisfy dist(S,S*) < e, where §* is the optimal solution.

In order for this definition to make sense, we need some sense of the “distance” between two solutions to
an instance of a problem. For this meeting, we will apply this definition to k-clustering problems, so our
notion of distance will simply be the fraction of points classified differently by the two clusterings. However,
we do have to be a bit careful here. Suppose that we tried to define the distance between two clusters
C= (Cl, ...,Ck) and C = (017 7Ck) as

dist(C,C) = ~ 3 |Ci — G|

n-

If C simply permuted the names of the clusters in C, this definition would say that the distance between these
two clusterings is 1, even though intuitively we would like to say that they are the same clustering, and so
should have a distance of zeroE| To avoid this, when we define the distance between two clusterings, we allow
for arbitrary renamings of the clusters, and take whichever naming gives us the lowest distance:

k
. 5 1 ~
dist(C,C) = min - ; |Ci — Cogiy

Here, the minimum is taken over all permutations of [k].

ndeed, with this naive definition, it would be impossible to get (c, €) stability for any € < 1 and k > 1, as we could always
permute the names on the optimal clustering in order to get a clustering of the same value but at a distance of one away.

Lecture 9: Balcan-Blum-Gupta Stability 2

9.2 Problem Statement

As we did with Bilu-Linial in the last meeting, we will apply this new definition of stability to the k-medians
problem. In order to make the definition of the algorithm easier, we are going to make some assumptions
about our inputs, listed below:

Assumption 9.2. The input is (1 + «, €)-stable for some «, e > 0.
Assumption 9.3. The values of o and € in assumption [9.2] are known.
Assumption 9.4. The value OPT := ®(C*) is known.

Assumption 9.5. Every cluster in the optimal clustering C* has size at least 2en(1+ 2) + 2.

Assumption [0.2]is, of course, key to our analysis, and cannot easily be removed. The given notes show a
way to remove both assumptions [0.3] and [9.4] but actually does still use the values of « and € even in the
improved algorithm. Thus, here we will only show that you can remove assumption Finally, [BBG] show
that you can remove assumption though it may lead to more points being misclassified. For the sake of
time, we will not go in depth into how to remove this last assumption.

9.3 The Algorithm

9.3.1 The Good, The Bad, and The Ugly

Before stating the algorithm, it is helpful to classify some of the points we are asked to cluster based on how
easy we expect it to be to put them in the right cluster. We call a point “good” if it is close to the median of
its optimal cluster (at a distance of no more that oPT - %) and is well separated from the next closest center
(the difference between the distance to its optimal median and the next closest one is greater than OPT - 2);
if a point is not good, we call it “bad”.

Lemma 9.6. The number of bad points is at most b := en(1+ 2).

Proof. First, we note that no more than 567” points can fail to be close to their respective centers. If this were
not the case, the contribution to the objective value of the optimum solution for just those points would be
larger than OPT, meaning that the overall objective value would have to be larger than OPT, as no point can
be at a negative distance from its median. This is a contradiction, since OPT is defined to be the objective

value of the optimal clustering.

Next, we claim that fewer than en points will fail to be well separated. If this were not the case, we could
move en of those points to their next closest cluster. By assumption 0.5, we move fewer than half the points
in each cluster, meaning that the ¢ used in calculating the distance between the optimal clustering and this
new clustering will just be the identity. Hence, the distance between this new clustering and the optimum
would be €. But since change in the objective value would be at most OPT - &, meaning that this clustering
would violate assumption [9.2] O

Lecture 9: Balcan-Blum-Gupta Stability 3

9.3.2 Phase 1

[BBG]’s algorithm proceeds in two stages. The first gets us an initial clustering that is guaranteed to correctly
cluster all of the good points. By assumptions and we can define the value 7 := % -OPT - == and
create a graph G = (X, E) where the vertices are the n points to be clustered and (z,y) € E if and only if
d(z,y) < 7. This graph is a bit too connected to be useful to us, so we trim it back a bit, creating a new
graph H = (X, F) where FF C F and we keep edge (z,y) if and only if z and y have at least b common
neighbors in GE| To get our clustering, we simply take the k largest connected components in H as our
clusters, and assign any points not in any of those components arbitrarily.

Lemma 9.7. If x and y are good points in the same optimal cluster C}, (z,y) € E.
Proof. Since all good points are close to their respective centers, we have by the triangle inequality that

d(a,y) < d(w,c) +d(eiy) < (opT-) + (0pT- =) =7

en Hen

O

This lemma tells us that the good points in a given cluster will all form a clique in G. By assumption [9.5] we
have that the number of points in C7 is at least 2b+ 2, so the number of good points is at least b + 2. Hence,
the clique of good points will survive the creation of H, since every pair of points in that clique shares at
least the other b clique vertices as neighbors. This leads nicely into our next lemma:

Lemma 9.8. Each of the k largest connected components in H contains all the good points from exactly one
optimal cluster.

Proof. From above, we know that the clique of good points from a given cluster will survive in H, so we
know that all the good points in a given cluster will end up in the same connected component. We now have
to show that two different clusters can’t end up in the same connected component. In order to do this, we
note that no bad point can be neighbors in G with good points from two different clusters. If this was the
case, the triangle inequality would tell us that the distance between those two good points would be at most
2T = % -OPT - 2. But then those points are good, meaning they are within % -OPT - = of their cluster center,
so an additional application of the triangle inequality gives us that the each good point is within opPT - ==
of the other’s cluster center; this contradicts the well-separated property of the good points. This tells us
that along any path in G between good points in two different clusters, there must be two adjacent vertices
whose only shared neighbors are bad points. Since this leaves them with at most b — 2 < b potential shared
neighbors, we know that this edge does not get included in H, and so every path between two clusters gets
cut.

Now that we know every cluster of good points ends up in its own connected component, we just need to
show that the k largest connected components will all be of this form. But we know that there are at most b
bad points, so the largest cluster not of this form can have at most b vertices in it. By contrast, assumption
tells us that there are at least b+ 2 good points in every cluster, so the connected components of this
form will all have size at least b+ 2. Hence, the k “cluster” connected components will all be bigger than any
other components, meaning that they are the k largest ones. O

This lemma tells us that our algorithm will correctly cluster all of the good points, meaning that at worst it
misclassifies the O(en(1 + 1)) bad points.

2This step relies on assumption since b is defined based on « and e. This is the part that the given notes overlook when
they claim later on that we can eliminate that assumption.

Lecture 9: Balcan-Blum-Gupta Stability 4

9.3.3 Phase 2

The second phase of the algorithm is a rather clever “clean-up” phase which is guaranteed to correctly classify
all the points which are well separated, even if they aren’t close. The idea is that the property of being well
separated will mean that a point is generally closer to the good points in its correct cluster than it is to those
in any other cluster. In order to leverage this idea, we compute the median distance between each point and
the points in a given cluster from phase 1, then assign a point to whichever cluster had the smallest median
distance.

Lemma 9.9. If z is o well separated point that belongs to the optimal cluster C}, cluster i will have the
smallest median distance to it.

Proof. By the triangle inequality, we know that the distance between x and any good point y in cluster C}
is at most d(z, ¢;) + d(c;,y), which is at most d(z,¢;) + 7, as y is close to its center. But there are at least
b+ 1 good points in the phase 1 cluster corresponding to C; at at most b other (bad) points, meaning that
the median distance will also be at most d(z,¢;) + 7. If we instead look at the distance to some point y in
some other cluster Cf, we have that d(z,y) > d(z,c;) — d(cj,y). The former term is at least o7+ d(x, ;)
since x is well separated, while the later term is at most 3 since y is close. Hence, in this case we have that
d(z,y) > d(z,¢;) + 27. Again, more than half the points in the cluster corresponding to C} are good points
from that cluster, meaning that the median distance is at least d(z, ¢;) + 27. O

This lemma tells us that after this clean-up step, the only points that might still be misclassified are those
which are not well separated. From the proof of Lemma we see that there are at most en such points.

9.3.4 Removing Assumptions

As promised, we now will briefly discuss how to remove assumption While we used the value of OPT many
times in our analysis, the only place we used it in the actual algorithm was to determine the value of 7 when
building our graph GG. However, we note that the exact value of 7 is not important—the only thing that actually
matters is which edges get included in G. Thus, we need not try every possible value of 7, merely the ones
that actually cause the graph G to change. Since there are only (Z) possible edges that could appear in G, we
only need to try (g) different values for 7. If we simply take the best clustering we find from any choice of 7,
our result will be at least as good as if we knew the exact value of 7 and ran the algorithm as initially described.

Finally, we give a brief word about assumption As it turns out, this assumption is unnecessary for phase
1 of the algorithm, though we don’t have time to discuss exactly how to remove it from the analysis. However,
[BBG] were not able to come up with a way to remove this assumption from the second phase of the analysis.
Thus, if we remove this assumption, we end up with potentially as many as O(en(1 + é)) points misclassified,
as opposed to the at most en we can get with that assumption.

References

[BBG] M.-F. Balcan, A. Blum, and A. Gupta. Approximate clustering without the approximation. In
Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1068 -
1077, 2009.

	Introduction
	Problem Statement
	The Algorithm
	The Good, The Bad, and The Ugly
	Phase 1
	Phase 2
	Removing Assumptions

