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In this lecture, we discuss the metric uncapacitated facility location problem. This problem is a nice context
within which various techniques common to many approximation algorithms can be explored — here, we will
focus on deterministic and random rounding of a linear program relaxation.

6.1 Primal

In an instance of the uncapacitated facility location problem, we are given a set of clients D and a set of
facilities F . Each facility i ∈ F is associated with a cost fi ∈ R+ of opening, and each pair of client and facility
(i, j) ∈ F ×D comes with a connection cost cij ∈ R+, intuitively a cost associated with transportation between
client j and facility i. The goal is to open some subset F ′ the facilities, accruing their opening costs, then
assign each client to an open facility, accruing corresponding connection costs, in such a way as to minimize
the total cost. Note however that the problem as currently stated is rather hard to approximate — intuitively
it is a generalization of the set cover problem (i.e. given set X and subsets X1, . . . , Xm partitioning X, find
I ⊆ [m] of minimal cardinality such that ∪i∈IXi = X), with elements xj of the input set X corresponding to
clients j, subsets Xi corresponding to facilities i of cost one, and xj ∈ Xi or x /∈ Xi corresponding to cij = 0
or cij =∞, respectively. This reduction preserves solution cost (|I| the number of subsets taken), thus an
α-approximation for uncapacitated facility location is an α-approximation for set cover, and lamentably
under some not-unreasonable complexity-theoretic assumptions it is impossible to do much better than an
Θ(log n)-approximation for set cover.

But we would like to do better than Θ(log n), so we enforce that connection costs must obey the triangle
inequality. Strictly speaking, there aren’t any facility-facility or client-client costs given in the problem, so
the triangle inequality states something slightly different from what we are used to:

∀i, i′ ∈ F,∀j, j′ ∈ D : cij′ ≤ cij + ci′j + ci′j′ .

If you want, you can imagine secret costs between pairs of clients and pairs of facilities, and then the above is
a direct consequence of the standard triangle inequality. This additional requirement makes practical sense,
as distances in the real world generally obey the triangle inequality, and more importantly allows us to focus
our efforts on an easier problem. We say now that we are dealing with the metric uncapacitated facility
location problem (since the connections costs now define a metric space on facilities and clients).
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Easier problem in hand, we can now write an integer program

min
∑
i∈F

fiyi +
∑

i∈F,j∈D
cijxij

s.t. ∀j ∈ D :
∑
i∈F

xij = 1

∀i ∈ F,∀j ∈ D : xij ≤ yi
∀i ∈ F,∀j ∈ D : xij ∈ {0, 1}

∀i ∈ F : yi ∈ {0, 1}

with xij a Boolean indicator variable representing client j being connected with facility i, and yi the indicator
for opening facility i. The constraint

∑
i∈F xij = 1 enforces that client j be connected to exactly one

facility, and xij ≤ yi allows client j to connect with facility i only if it has been opened. The objective∑
i∈F fiyi +

∑
i∈F,j∈D cijxij is the total cost, which we are of course minimizing.

Integer programs are in general NP-hard, and we would much rather have a linear programs, which we have
efficient algorithms (e.g. simplex) for dealing with. So we relax the integer constraints:

min
∑
i∈F

fiyi +
∑

i∈F,j∈D
cijxij

s.t. ∀j ∈ D :
∑
i∈F

xij = 1

∀i ∈ F,∀j ∈ D : xij ≤ yi
∀i ∈ F,∀j ∈ D : xij ≥ 0

∀i ∈ F : yi ≥ 0.

This linear program comes with its own issues — the optimal solution is not guaranteed to be integral, and is
thus not directly a solution to our original problem. The optimal integer program solution is however still
feasible in the linear program, so we know the optimal fractional solution is a lower bound on the minimum
total cost for facility location. We will soon see how to round the fractional linear program solution to an
integral solution we can use for facility location, but this first requires a bit more setup.

6.2 Dual

When rounding linear programs, it is often nice to have optimal solutions in both the primal and dual to work
with. Intuitively, the dual is the problem of finding the best possible lower bound on the primal objective.
That is, we know for linear programs that any feasible dual solution is less than any feasible primal solution
(this is weak duality), and moreover the optimal dual objective is exactly equal to the optimal primal objective
(strong duality). We can find the dual algebraically, by taking a linear combination of the constraints in the
primal problem:



Lecture 6: Metric Uncapacitated Facility Location 3

min
∑
i∈F

fiyi +
∑

i∈F,j∈D
cijxij

s.t. ∀j ∈ D : vj

(∑
i∈F

xij

)
= vj

∀i ∈ F,∀j ∈ D : wij(yi − xij) ≥ 0

∀i ∈ F,∀j ∈ D : xij ≥ 0

∀i ∈ F : yi ≥ 0.

That is, we are multiplying each constraint of the form
∑

i∈F xij = 1 by some vj and each xij ≤ yi constraint
with some wij . As long as all wij are nonnegative, the directions of the inequalities are preserved, and adding
these constraints up leads to a lower bound on a linear combination of the primal variables vj and xij . Since
these primal variables are also positive, as long as the resulting coefficients in this linear combination are at
most the coefficients in the primal objective, we have a lower bound on the primal solution. We want the
greatest possible lower bound, so we arrive at

max
∑
j∈D

vj

s.t. ∀i ∈ F :
∑
j∈D

wij ≤ fi

∀i ∈ F,∀j ∈ D : vj − wij ≤ cij
∀i ∈ F,∀j ∈ D : wij ≥ 0.

We see that
∑

j∈D vj is the right hand side of the linear combination of the constraints, i.e. the lower bound
that we want to maximize. The coefficient of each yi on the left hand side is equal to

∑
j∈D wij , so we want

this at most fi, the coefficient of yi in the primal objective. Similarly, the coefficient of each xij on the left
hand side is vj − wij , which we want no greater than the coefficient cij in the primal.

We also could have arrived at this dual through more intuitive means. Suppose we want to recoup our costs
after building facilities and connecting each client in some way, so we charge each client j a positive cost wij

for using facility i and the cost cij for connecting them. Nobody wants to spend more than they have to, so
each client then chooses the cheapest facility to use:

∀j ∈ D : vj = min
i
wij + cij

where vj is the actual amount we will end up changing client j, which we want to maximize. A common
linear programming trick is to rewrite the minimum as

∀j ∈ D,∀i ∈ F : vj ≤ wij + cij .

Since we are maximizing vj , this set of constraints is equivalent to the previous equality. Moreover, due to
government regulations or market forces or maybe some sense of goodwill or moral principle we do not want
to charge any client too much. Specifically, for any facility j, we do not want the total of the facility use
costs wij across all clients i to be more than the opening cost fi. This results in
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max
∑
j∈D

vj

s.t. ∀i ∈ F :
∑
j∈D

wij ≤ fi

∀i ∈ F,∀j ∈ D : vj − wij ≤ cij
∀i ∈ F,∀j ∈ D : wij ≥ 0

which we notice is the exact same linear program as before. It is also intuitive that our moral qualms about
overcharging our clients is pretty terrible for business — if we prevent the sum of facility use costs wij over
all clients from exceeding our facility opening cost fi, surely there is no way we can make any profit, and in
the very best case we can only hope to break even. This is exactly what weak and strong duality state: that
the dual objective is a lower bound on the primal, with equality at the optimum. Notice also that since the
primal linear program can do no worse than the integer solution, the dual solution is a lower bound on the
actual total cost in the facility location problem.

6.3 Complementary Slackness

We now have primal and dual problems with equal optimal objectives, but we would like also to have some
sense of how their variables and constraints are related. Recall that each of the dual constraints corresponds
to one variable in the primal — specifically, we are constraining the coefficient for that variable in the linear
combination of primal constraints to be at most the coefficient for that variable in the primal objective
function, in order to have an effective lower bound on the primal. Intuitively, for optimal primal and dual
solutions, if this primal variable is nonzero, then the corresponding constraint must be tight, i.e. the inequality
is not strict. Otherwise, there is some slack with which we can get a better lower bound, contradicting our
assumption that the dual is optimal. This intuition is what complementary slackness makes formal.

For our purposes, we only need to examine complementary slackness for the primal variables xij and the
corresponding dual constraints vj − wij ≤ cij , or equivalently

∀i ∈ F,∀j ∈ D : vj + sij = wij + cij

for some positive slack variable sij . Since we are dealing with optimal solutions, the difference between the
primal and dual objectives, i.e. the duality gap, is zero by strong duality. That is, for optimal primal solutions
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(x∗, y∗) and optimal dual solutions (v∗, w∗), we have

0 =
∑
i∈F

fiy
∗
i +

∑
i∈F,j∈D

cijx
∗
ij −

∑
j∈D

v∗j

=
∑
i∈F

fiy
∗
i +

∑
i∈F,j∈D

cijx
∗
ij −

∑
j∈D

∑
i∈F

x∗ijv
∗
j (primal constraint)

=
∑
i∈F

fiy
∗
i +

∑
i∈F,j∈D

x∗ij(cij − v∗ij)

=
∑
i∈F

fiy
∗
i +

∑
i∈F,j∈D

x∗ij(cij − w∗ij − cij + sij)

=
∑
i∈F

fiy
∗
i +

∑
i∈F,j∈D

(−x∗ijw∗ij + x∗ijsij)

≥
∑
i∈F

fiy
∗
i +

∑
i∈F,j∈D

(−y∗iw∗ij + x∗ijsij) (primal constraint)

≥
∑
i∈F

fiy
∗
i −

∑
i∈F

y∗i
∑
j∈D

fi +
∑

i∈F,j∈D
x∗ijsij (dual constraint)

=
∑

i∈F,j∈D
x∗ijsij

applying the primal constraint ∀j ∈ D :
∑

i∈F x
∗
ij = 1, then the other primal constraint ∀i ∈ F,∀j ∈ D :

x∗ij ≤ y∗i , and finally the dual constraint ∀i ∈ F :
∑

j∈D w
∗
ij ≤ fi. Notice, though, that each x∗ij and sij is

nonnegative, so none of their products can be less than zero. Hence,

∑
i∈F,j∈D

x∗ijsij = 0

−→ ∀i ∈ F,∀j ∈ D : x∗ijsij = 0

−→ ∀i ∈ F,∀j ∈ D : x∗ij = 0 ∨ sij = 0.

That is, given optimal primal and dual solutions, for each x∗ij variable, either it is zero or its corresponding
dual is tight, giving us the complementary slackness condition we were looking for. Moreover, since each w∗ij
is nonnegative, we immediately get the following lemma relating primal and dual variables:

Lemma 6.1. Given (x∗, y∗) and (v∗, w∗) optimal solutions to the primal and dual respectively, for all i ∈ F
and j ∈ D, we have x∗ij > 0 implies v∗j ≥ cij.

Given optimal solutions (x∗, y∗) and (x∗, w∗), consider the neighborhood Nj = {i | x∗ij > 0} around client j
of facilities i that the optimal primal solution assigns some nonzero connection x∗ij > 0 to. Then the above
lemma can be restated as

∀j ∈ D∀i ∈ Nj : v∗j ≥ cij .

This has a nice geometric interpretation: the v∗j -ball around each client j fully encompasses its neighborhood
Nj .
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j

v∗j

Figure 6.1: An example facility location problem instance along with the primal and dual linear program
solutions. The circle is a client j. Solid squares are facilities in Nj , while dashed squares are outside Nj .
Notice that the v∗j -ball around j encompasses Nj .

6.4 Deterministic Rounding

We are now finally ready to round the fractional linear program solution. Consider the following algorithm:

Algorithm 1 Deterministic rounding for metric uncapacitated facility location

(x∗, y∗)← solve primal linear program
(v∗, w∗)← solve dual linear program
E ← D
D′ ← ∅
while C 6= ∅ do

Choose j ∈ C with minimum corresponding v∗j
D′ ← D′ ∪ {j}
Choose i ∈ Nj with minimum cost fi
for all j′ ∈ C s.t. Nj ∩Nj′ 6= ∅ do

Connect j′ to i
E ← E \ {j′}

end for
end while

In the algorithm, we iteratively choose the client j in the set of unconnected clients E (initially equal to D)
with the smallest v∗j -ball and pick the cheapest facility i in its neighborhood to open. Then, we connect not
only client j to i (let’s call this a direct connection), but also every client j′ such that the neighborhoods of j
and j′ intersect (an indirect connection). That is, we indirectly connect any client j′ for which there exists
some facility i′ such that both x∗i′j and x∗i′j′ are nonzero. Notice that this algorithm preserves an important
property: the subset D′ ⊆ D of clients for which we directly open and connect a facility has nonintersecting
neighborhoods. That is,

∀j, j′ ∈ D′ : Nj ∩Nj′ = ∅

This is true since any such client j with neighborhood Nj that intersects with Nj′ for some j′ ∈ D′ must
have already been indirectly connected when we were considering j′, and thus is no longer in the set of
unconnected clients E and will never be directly connected nor added to D′. We can now analyze this
algorithm’s performance.
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v∗j′

i′

i

Figure 6.2: The client j is being indirectly connected with facility i in the neighborhood of client j′. Facility
i′ is in the intersection of Nj and Nj′ . By the triangle inequality, cij ≤ ci′j + ci′j′ + cij′ Note also that the
algorithm sorts clients in increasing order of v∗j , so v∗j′ ≤ v∗j .

Theorem 6.2. Algorithm 1 is a 4-approximation algorithm for metric uncapacitated facility location.

Proof. The optimal primal and dual variables are still (x∗, y∗) and (v∗, w∗) respectively, and opt the value
of the optimal solution. Let’s consider just the total facility opening cost CF first. Since only the cheapest
facility is opened for each directly-connected client, we can bound this cost

CF =
∑
j∈D′

min
i∈Nj

fi

≤
∑
j∈D′

∑
i∈Nj

x∗ij min
i∈Nj

fi (primal constraint)

≤
∑
j∈D′

∑
i∈Nj

x∗ijfi

≤
∑
j∈D′

∑
i∈Nj

y∗i fi (primal constraint)

≤
∑
i∈F

y∗i fi ((Nj)j∈D′ are disjoint; no overcounting of i ∈ F ).

≤ opt

Note we used ∀j ∈ D′ :
∑

i∈Nj
x∗ij = 1, which is true since by definition Nj contains all nonzero x∗ij for client

j.

Let us now move on to the connection costs of this algorithm, CC . Each client j is connected exactly once,
but there are two cases to consider for this connection: either it is direct or indirect. For the direct case,
Lemma 6.1 tells us that the connection cost is at most v∗j , since we are connecting j with a facility in its
neighborhood Nj . That is, ∀j ∈ D′ : Cj ≤ v∗j , where Cj is the connection cost our algorithm accrues for j.
On the other hand, for the indirect case we know that the neighborhood Nj for our client j intersects with
the neighborhood Nj′ of some other client j′, and it is to some facility i in Nj′ that we are connecting j. This
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means there exists some other facility i′ inside both Nj and Nj′ . Thus, for indirectly connected clients j,

Cj = cij

≤ ci′j + ci′j′ + cij′ (triangle inequality)

≤ v∗j + 2v∗j′ (lemma 6.1)

≤ 3v∗j

where the last inequality follows from the fact that the algorithm considers clients j in increasing order of v∗j
— client j′ was already considered before j in order to be directly connected, so v∗j′ ≤ v∗j . Hence each client is
connected with cost no worse than 3v∗j , so the total connection cost is bounded

CC ≤
∑
j∈D

3v∗j

= 3opt.

The total cost is therefore CF + CC ≤ 4opt. Since the linear program is no more than the facility location
optimal, we have a 4-approximation algorithm, as desired.

Note that when considering facility location costs, we bounded the opening cost of the linear program∑
i∈F y

∗
i fi with opt, which seems rather wasteful. We will now see how a randomized algorithm can remedy

this.

6.5 Random Rounding

For each client j, notice that
∑

i∈F x
∗
ij = 1 by the primal constraints, so it is natural to interpret this as a

probability distribution over facilities. We can use this distribution to sample a facility i to directly connect
to a client j, with expected connection cost

E[Cj ] =
∑
i∈Nj

x∗ijcij .

since by definition the distribution x∗ij has no support outside Nj . Let Bj =
∑

i∈Nj
x∗ijcij be the expectation

for the cost of directly connecting j, even if it were indirectly connected in the actual running of the algorithm.
We can order the clients by increasing order of v∗j +Bj instead of v∗j — we will see why this is necessary in
the analysis. This results in the following algorithm.

Notice that this algorithm is exactly the same as the deterministic one, with the aforementioned changes
to facility sampling and ordering of clients. Perhaps surprisingly, this simple change results in a significant
improvement in approximation ratio.

Theorem 6.3. Algorithm 2 is a 3-approximation algorithm for metric uncapacitated facility location.

Proof. Recall that when we say a random algorithm is an α-approximation, we mean that it achieves an
approximation ratio of α in expectation. Let us start with the expected facility opening costs. The analysis
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Algorithm 2 Deterministic rounding for metric uncapacitated facility location

(x∗, y∗)← solve primal linear program
(v∗, w∗)← solve dual linear program
E ← D
D′ ← ∅
while C 6= ∅ do

Choose j ∈ C with minimum corresponding v∗j +Bj

D′ ← D′ ∪ {j}
Sample i ∈ Nj according to distribution (x∗ij)j∈Nj

for all j′ ∈ C s.t. Nj ∩Nj′ 6= ∅ do
Connect j′ to i
E ← E \ {j′}

end for
end while

is actually almost identical to that of the deterministic algorithm:

E[CF ] =
∑
j∈D′

∑
i∈Nj

x∗ijfi

≤
∑
j∈D′

∑
i∈Nj

y∗i fi (primal constraint)

≤
∑
i∈F

y∗i fi ((Nj)j∈D′ are disjoint).

For the expected connection cost E[Cj ] of client j, we still have the two cases to consider. If j is directly
connected, then

E[Cj ] =
∑
i∈Nj

x∗ijcij = Bj

by definition, and if it is indirectly connected, we again have some other client j′ ∈ D′ such that the facility i
that we connect j to is in Nj′ , and there is some facility i′ in both Nj and Nj′ . Hence,

E[Cj ] = ci′j + ci′j′ +
∑
i∈N ′

j

x∗ij′cij′

≤ v∗j + v∗j′ +Bj′

≤ 2v∗j +Bj

since our algorithm orders clients by v∗j +Bj so v∗j′ +Bj′ ≤ v∗j +Bj . Thus, the expected total connection
cost across all clients is

E[CC ] ≤
∑
j∈D

(2v∗j +Bj) = 2opt +
∑
j∈D

∑
i∈F

x∗ijcij

and the total expected cost for our algorithm is

E[CF + CC ] ≤
∑
i∈F

y∗i fi + 2opt +
∑
j∈D

∑
i∈F

x∗ijcij = 3opt.

The optimal solution of the linear program still has value no greater than that of facility location, so this is a
3-approximation.
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We see then that the rounding algorithm’s approximation ratio is significantly improved when we randomly
select facilities, instead of deterministically selecting what may have appeared to be the best (cheapest)
choice. This power of randomness is a theme that comes up often in approximation algorithms and theoretical
computer science in general.
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