Knapsack Revisited: DP Notes

Leon Xu, Lily Bhattacharjee
May 22, 2019

1 What is DP?

Dynamic programming is a technique commonly used in approximation algorithms when a problem can be
solved from solving smaller subproblems that compose it. To save time in calculating these smaller solutions
(especially when results might be recalculated repeatedly — think recursive Fibonacci), DP algorithms are
usually implemented iteratively, with intermediate results being stored in a table / list.

Weakly NP-hard problems: Some can be implemented in polynomial time with DP proportionally
to the input size in unary rather than binary (pseudopolynomial algorithms). By rounding all input values
so that the number of unique input values is polynomial to input size and error parameter € > 0, the pseu-
dopolynomial algorithm runs in polynomial time.

Scheduling problems: These types of problems have "large” and ”small” parts w.r.t. processing time. By
rounding large input values so that we have a number n unique values that is proportional to the input size
and €, we can use DP to approximate a solution to the scheduling problem in polynomial time.

2 Introducing the Knapsack Problem

A traveler has a knapsack with some limited capacity B > 0. The parameters of the problem are the
following:

o I ={1,..,n} (alist of n items)
e item ¢ has value v; > 0, size s; > 0

The goal: return a list of items S € I to maximize the value of the items the traveler fits in his knapsack
while taking into account the constraint of the knapsack capacity. In formal notation:

max() ;g Vi)
Constraints:), gs; < B

Note: We ignore any items that can’t fit in the knapsack on their own i.e. s; > B for some i € S

3 A DP Solution

1. Maintain an array A of length n. Each element of A is a pair (¢, w). Here, at location j, t stands for the
total space that some subset of items S takes up where |S| = j, and w stands for the total value of all items
in the aforementioned S. This is based on the assumption that) ;¢ s; =t < B. Formally, > . g v; = w.
2. There can be many such (¢, w) pairs for particular j values, so we’ll just keep track of the most space
efficient, value-maximizing ones. A pair (¢, w;) can dominate a pair (t2,ws) for the same j value if t; < t9

and w; > ws i.e. more value for less space. Domination is transitive.

3. At any point in the algorithm, no pair in A(j) should dominate another i.e. if A(j) contains pairs
(t1,w1), e (b, wg), B <t < ... <t and wy < wo < ... < wg.

4. Note that there can be B + 1 pairs max in A(j) (0 items ... B items if each item in the knapsack
has size 1). Also note that if V' is the sum of all item values in the knapsack, there are max V + 1 pairs in
the list (0 value ... V' value by the domination inequality enforced from above).

5. Any subset S s.t. |S| = j with corresponding size)
element in A(j).

ieg Si and value Eie g Vi is dominated by some

Pseudocode:
A(l) = {(07 0)7 (817 ’U)l)}
for j=2..n

A(j) = A(j — 1) // accumulates pairs of < j — 1 items
for each pair (t,w) € A(j —1)
if t+s; < B // if the newest item fits in the pack with an existing sequence
add (t+ s;,w +v;) to A(j)
remove dominated pairs from A(j) // we won’t be considering these low-efficiency pairs anymore
return max (s wycA(n)w // return the maximum value knapsack setup for number of total items < n

4 DP Correctness

Theorem: Our DP implementation from the pseudocode above will correctly determine the optimal value
of the knapsack problem.

Proof: We will prove this statement by induction.

Base case: We consider the list A(1). In the beginning of the program this is set to {(0,0), (s1,w1)}.
Hence, A(1) contains all non-dominated pairs corresponding to feasible sets S € {1} (empty set, set of item

1).
Induction hypothesis: Assume that the statement holds true for list A(j — 1).

Inductive step: Consider S, a subset of the first j items. We know that ¢t =), g s; < B (fits in the knap-
sack), w =) . g v; (sum of item values). We claim the contrary — that there exists some pair (¢, wy) € A(j)
s.t. ty <t, wy > w. We split this assumption into cases:

Case 1 — j ¢ S: By the induction hypothesis and the initial setting of A(j) = A(j — 1) in the begin-
ning of the iteration, A(j) will contain all non-dominated pairs corresponding to feasible sets S € {1,...,5}.

Case 2 — j € S: By the induction hypothesis, there exists some (f,%) pair in A(j — 1) that dominates
(Zies_{j} s, ZieS—{j} v;) st t < ZieS—{j} s; and w > ZieS—{j} v;. This occurs when the if condition in
the pseudocode holds true, so the pair (f+ s;,1 +v;) will be added to A(j) if {+s; <t < B and @ +v; > w.
Hence, the pair (tf,ws) € A(j) that dominates (¢, w) will always exist.

Analyzing the pseudocode, the DP algorithm will take O(nmin(B,V')) time (min(B,V)) for the maximum
list size, n for the number of lists). Note that this not polynomial time even though it is linear w.r.t. n
because all inputs are binary-encoded i.e. the size of input B is actually log, B. This means that runtime
O(nB) is exponential w.r.t. B. Going back to binary vs. unary-encoded inputs, if the input was in unary,
O(nB) would be polynomial in input size.

5 A Polynomial-Time Approximation

pseudopolynomial: an algorithm that has a running time polynomial to the size of the input when the
input values are unary-encoded

Note: If max possible item value V' were polynomial in n, the runtime would be polynomial to input
size. We can get a polynomial time approximation of the knapsack problem by rounding item values. While

this won’t give the optimal solution in most cases, it will be close.

polynomial-time approximation scheme (PTAS): a group of algorithms {A.} where for each € > 0,
A1+ is a minimization approximation algorithm or A;_. is a maximization approximation algorithm

Note: Runtime of A, is dependent on % (potentially exponential).

fully polynomial-time approximation scheme (FPAS, FPTAS): approximation algorithm A, with
runtime bounded by a polynomial in % (removes exponential dependence from consideration)

A general approach:

1. Ttem values will be measured in multiples of some p. Round each value v; to the nearest integer multiple gpu.
2. The new values v; will be | “] for each item i.

3. Run our previously-specified DP algorithm on the new values.

Note: The rounding loss doesn’t have a huge effect but at the same time, we can now run our algorithm in
polynomial time. Because we are rounding down to the nearest multiple of p, each value v} will be off from

v; by max p. Hence, each feasible solution may differ by max ny.

We want to specify our error as e *x lower_bound(OPT). If M is the max item value, we can have M

be a potential OPT lower bound because we could just pack the max-value item by itself. Therefore, to

specify p1, we have the following relationship: ny = eM, or p = <4,

n

With the changed item values v}, we have V' = Y ") = ZleLd\Z/nJ by substituting for p. From

this, we see that V' is on the order of O("—:) Because the iteration in the original DP knapsack is run n

times, the runtime of the new algorithm is O(";) (bounded by a polynomial w.r.t. L.

Pseudocode:

M = max;e v; // item with the maximum value
M

p= <M

n
vl = L%J for all items in I run the DP algorithm on the new scaled knapsack instance with values v}

6 Approximation Optimality

Theorem: Our polynomial-time approximation for for knapsack algorithm returns a solution < (1—¢) times
OPT.

Below, we list our definitions:

S — set of items returned by our approximation algorithm
O — optimal set of items fulfilling knapsack constraints

We know M < OPT (only putting the max value item in the knapsack). Also, based on the definition

of v}, we know that v; is bounded by pv; and (u + 1)v; (rounded down to the nearest multiple of). From
this, we can state the following:

Y ics Vi = LY ;e g Vi, because we rounded the values down

> 1D o0 v
> ico i — |0l
> Y ico Vi — nji, because |O| is max n (all items in OPT)
= ;co Vi — €M, because we found earlier that ny = eM
> OPT — cOPT = (1 — €)OPT

