
Approximation Algorithms Spring 2019

Lecture 4: Submodular Maximization Part 2

Scribe: Antares Chen 3/6/2019

We conclude our discussion of maximizing submodular functions with the double greedy algorithm for
unconstrained submodular maximization due to Buchbinder, Feldman, Naor, and Schwartz [2].

4.1 Unconstrained Submodular Maximization

Previously, we provided two examples for problems that are modeled by maximizing a submodular function
under cardinality constraints: maximizing float among bank accounts, and maximizing social influence.
However, many more problems are captured when cardinality constraints and guaranteed monotonicity are
not provided.

Recall the problem of maxcut. Given G = (V,E) where each edge has weight we ≥ 0, our goal is to choose a
cut such that the total weight of edges crossing the cut is maximized. More precisely, we wish to find S ⊆ V
such that the following function is maximized.

f(S) =
∑

e∈E(S,V−S)

we (4.1)

where E(S, V − S) = {(u, v) ∈ E : u ∈ S and v ∈ V − S}. The objective function for maxcut is submodular.

Claim 4.1. For a graph G = (V,E) with edge weights we, the function f defined in equation 4.1 is submodular.

Proof. Recall that f is submodular if and only if for all S, T ⊆ V we have that f(S∪T)+f(S∩T) ≤ f(S)+f(T).
Now, a sum of submodular functions is also submodular, thus to demonstrate that f(S) is submodular, we
will show that it is a sum of submodular functions. Define fe : 2V → R≥0 for each edge e ∈ E as

fe(S) =

{
we if e ∈ E(S, V − S)

0 otherwise

Suppose e = (u, v) and consider any S, T ⊆ V . To see that fe is submodular, we verify three cases.

1. S, T either contain none or both of u, v. In this case we have that

f(S ∪ T) + f(S ∩ T) = 0 = f(S) + f(T)

2. S, T contain the same one of u, v. Without loss of generality, suppose u ∈ S and u ∈ T . Observe that

f(S ∪ T) + f(S ∩ T) = f({u}) + f({u}) = 2 · we = f(S) + f(T)

1

Lecture 4: Submodular Maximization Part 2 2

3. S, T contain one of but different u, v. Without loss of generality, suppose u ∈ S and v ∈ T . Observe that

f(S ∪ T) + f(S ∩ T) = f({u, v}) + f(∅) = 0 ≤ 2 · we = f({u}) + f({v}) = f(S) + f(T)

In all cases, fe satisfies submodularity. Finally, because f(S) =
∑

e∈E fe(S), we have that f is submodular.

However, the maxcut objective is certainly not monotone as the edge weights may be non-zero but f(V) = 0.

4.2 Maximizing Non-monotone Submodular Functions

Let us precisely define the problem of maximizing a non-monotone submodular function, sometimes called
unconstrained submodular maximization. Given E = [n] a ground set of elements, we wish to choose S ⊆ E
such that a submodular function f : 2E → R≥0 is maximized. We now present the double greedy algorithm
due to Buchbinder, Feldman, Naor, and Schwartz. The algorithm provided a simple resolution to a problem
that had been studied since the 1960s. We further discuss the history of this problem in the Concluding
Remarks section.

4.2.1 The Double Greedy Algorithm

The double greedy algorithm iterates through elements of E deciding whether or not to add an element i to a
maintained solution by computing what is gained by adding i or ignoring it. More precisely, if E = [n] is our
ground set and f : 2E → R≥0 our submodular function, then the algorithm proceeds as follows:

Double Greedy
Given ground set E and submodular function f : 2E → R≥0, initialize X0 = ∅. Do for i = 1, . . . , n:

1. Compute ai and ri according to the following:

ai = f(Xi−1 ∪ {i})− f(Xi−1) ri = f(X̂i−1 − {i})− f(X̂i−1)

2. If ai ≥ 0 and ri < 0, then update:
Xi = Xi−1 ∪ {i}

3. If ri ≥ 0 and ai < 0, then update:
Xi = Xi−1

4. If ai ≥ 0 and ri ≥ 0, then randomly update Xi according to the following probability:

Xi =

{
Xi−1 ∪ {i} w.p. ai

ai+ri

Xi−1 w.p. ri
ai+ri

This algorithm iteratively builds a solution Xi and it decides whether or not to add i based on computing ai
and ri. These two values measure what is gained in f if i is either added to Xi−1 or ignored.

Lecture 4: Submodular Maximization Part 2 3

- If one gains more by adding i, i.e. ai ≥ 0 while ri < 0, then i should be added to Xi−1.

- If one gains more by ignoring i, i.e. ri ≥ 0 while ai < 0, then i should be ignored.

But what should one do when adding and ignoring i both increase the value of the solution the algorithm
maintains? Why not flip a biased coin. Add i to Xi−1 with probability weighted by how much is gained by
either action. Indeed, this is why the algorithm is called “double greedy.” It greedily chooses either to add or
ignore i depending on how much it benefits the cost of the maintained solution. If either choice yields benefit,
then tiebreak randomly.

One may notice that there is a forth case. What if both actions decrease the value of the maintained solution,
i.e ai < 0 and ri < 0. This is not possible! Doing something will always increase the cost of Xi. Before
showing this, let us first define the set X̂i as follows:

X̂i = Xi ∪ {i+ 1, . . . , n}

Think of X̂i as the set of items that are in Xi along with what could potentially be added in future iterations.
It is not always the case that X̂i 6= Xi always, but it does hold in general that

X̂0 = E Xi ⊆ X̂i Xn = X̂n

Let’s also think of how X̂i changes based on whether step 2 or 3 is executed in the double greedy algorithm.

- If ai ≥ 0 and ri < 0, then X̂i = X̂i−1 as i is added to Xi−1

- If ai < 0 and ri ≥ 0, then X̂i = X̂i−1 − {i} as i is will never be considered for addition in the future.

We now prove that doing anything always benefits the cost of the maintained solution.

Claim 4.2. ai + ri ≥ 0 for all i.

Proof. Notice that Xi−1 ⊆ X̂i−1 − {i}. By submodularity, we have that

f(X̂i−1)− f(X̂i−1 − {i}) ≤ f(Xi−1 ∪ {i})− f(Xi)

However, X̂i−1 = (X̂i−1 − {i}) ∪ {i} meaning the above inequality becomes

f((X̂i−1 − {i}) ∪ {i})− f(X̂i−1 − {i}) ≤ f(Xi−1 ∪ {i})− f(Xi)

The LHS of that above is −ri while the RHS is ai. Thus −ri ≤ ai which is equivalent to that required.

4.2.2 Analysis

Since maxcut is an NP-hard problem, we cannot expect to determine the optimal set S ⊆ E that maximizes
a submodular f efficiently unless P = NP. Thus we seek to bound the approximation ratio of a solution
produced from this algorithm. Let opt ⊆ E be the optimal solution and define opti as follows:

opti = Xi ∪ (opt ∩ {i+ 1, . . . , n})

Lecture 4: Submodular Maximization Part 2 4

Consider opti as a sliding window of elements from opt to Xi since we have opt0 = opt while optn = Xn.
Because the double-greedy algorithm is stochastic, our statements will hold in expectation. More precisely,
we will require the following lemma.

Lemma 4.3. For all i = 1, . . . , n, the following holds

E
[
f(opti−1)− f(opti)

]
≤ 1

2
· E
[
(f(Xi)− f(Xi−1)) + (f(X̂i)− f(X̂i−1))

]
(4.2)

We defer the proof of this statement for now and show how this implies a bound on the approximation ratio.

Theorem 4.4. The double greedy algorithm provides a 1
2 -approximation for non-monotone submodular

maximization on expectation.

Proof. Consider the sum
∑n

i=1 E
[
f(opti−1)− f(opti)

]
and notice lemma 4.3 implies the following bound

n∑
i=1

E
[
f(opti−1)− f(opti)

]
≤ 1

2
·

n∑
i=1

E
[
(f(Xi)− f(Xi−1)) + (f(X̂i)− f(X̂i−1))

]
=

1

2
·
(n∑

i=1

(
E[f(Xi)]− E[f(Xi−1)]

)
+

n∑
i=1

(
E[f(X̂i)]− E[f(X̂i−1)]

))

Both sums are telescoping thus we have

n∑
i=1

E
[
f(opti−1)− f(opti)

]
≤ 1

2
·
(
E[f(Xn)]− E[f(X0)] + E[f(X̂n)]− E[f(X̂0)]

)

Notice that f(X0) = f(∅) = 0 while f(X̂n) = f(Xn) implying E[f(Xn)] is also 0. Meanwhile, f(X̂0) = f(E)
meaning E[f(X̂0)] is a constant that is at least 0. We can conclude that

1

2
·
(
E[f(Xn)]− E[f(X0)] + E[f(X̂n)]− E[f(X̂0)]

)
≤ 1

2
·
(
E[f(Xn)] + E[f(X̂n)]

)
=

1

2
·
(
E[f(Xn)] + E[f(Xn)]

)
= E[f(Xn)]

However,
∑n

i=1 E
[
f(opti−1)− f(opti)

]
is telescoping and equal to

n∑
i=1

E
[
f(opti−1)− f(opti)

]
= E

[
f(opt0)

]
− E

[
f(optn)

]
= f(opt)− E

[
f(Xn)

]

Thus we have

f(opt)− E
[
f(Xn)

]
≤ E[f(Xn)] =⇒ E[f(Xn)] ≥ 1

2
· f(opt)

as required.

Lecture 4: Submodular Maximization Part 2 5

The final step in our analysis is to demonstrate lemma 4.3. The proof of this lemma proceeds by checking
that inequality 4.2 holds for every conceivable case of the algorithm. Our case work splits based on whether
or not i ∈ opt, ai ≥ 0 and ri ≥ 0 for every iteration i. As a broad overview of the proof, notice for the cases
where ai ≥ 0 and ri < 0 as well as ai < 0 and ri ≥ 0 the element i is added / ignored deterministically, thus
we need not concern ourselves with computing an expectation. Additionally, we would have that ai ≥ ri or
ri ≥ ai respectively. The brunt of the proof is thus use submodularity to appropriately relate the left and
right side of inequality 4.2 to either ai or ri then use the fact that either ai ≥ ri or ri ≥ ai to conclude the
inequality.

In the case where we need to flip a biased coin, we fall back to the first two cases with a certain weighted
probability. Consequently, the expectation that we need to compute recycles the same computation performed
in the first two cases of our analysis. We will provide a sketch of the argument for the case when i /∈ opt.
The analysis for i ∈ opt is similar.

Proof sketch of lemma 4.3. Assume that i /∈ opt. We verify inequality 4.2 for the following cases.

1. Suppose ai ≥ 0 and ri < 0: element i is added to the maintained solution Xi−1 deterministically. Since
i /∈ opt, we have that

opti−1 = Xi−1 ∪ (opt ∩ {i, . . . , n}) ⊆ (Xi ∪ {i+ 1, . . . , n})− {i} = X̂i − {i}

thus by submodularity of f , we can conclude that

f((X̂i−1 − {i}) ∪ {i})− f(X̂i−1 − {i}) ≤ f(opti−1 ∪ {i})− f(opti−1)

Now, there are a couple things to notice about this inequality. Focusing on the LHS, we have that
opti−1 ∪ {i} = opti because i is added to Xi−1. Next consider the RHS. The set (X̂i−1 − {i}) ∪ {i} is
just X̂i−1 meaning the RHS is equivalent to f(X̂i−1)−f(X̂i−1−{i}), but f(X̂i−1)−f(X̂i−1−{i}) = −ri
by definition. This reasoning allows us to conclude:

f(opti−1)− f(opti) ≤ ri (4.3)

Let us now expand 1
2 · ai.

1

2
· ai =

1

2
·
(
f(Xi ∪ {i})− f(Xi−1)

)
=

1

2
·
(
(f(Xi ∪ {i})− f(Xi−1)) + (f(X̂i)− f(X̂i−1))

)
(4.4)

The addition of term f(X̂i) − f(X̂i−1) follows as f(X̂i) − f(X̂i−1) = 0. This is because X̂i = X̂i−1
since i is added to Xi−1. By assumption ri < 0 and ai ≥ 0 thus ri ≤ 1

2 · ai. The above calculations
combine to derive the required inequality.

2. Suppose ai < 0 and ri ≥ 0: element i is ignored from the maintained solution meaning Xi−1 = Xi.
Consequently opti−1 = opti. We thus have that

f(opti−1)− f(opti) = 0 (4.5)

Certainly, 0 ≤ 1
2 · ri thus expanding out ri derives

1

2
· ri =

1

2
·
(
f(X̂i−1 ∪ {i})− f(X̂i−1)

)
=

1

2
·
(
(f(Xi ∪ {i})− f(Xi−1)) + (f(X̂i)− f(X̂i−1))

)
(4.6)

The addition of term f(Xi ∪ {i})− f(Xi−1) follows as f(Xi ∪ {i})− f(Xi−1) = 0 because Xi = Xi−1.
Combining our calculations for this case derives the required inequality.

Lecture 4: Submodular Maximization Part 2 6

3. Suppose ai ≥ 0 and ri ≥ 0: With probability ai

ai+ri
we fall into case 1, and with probability ri

ai+ri
into

case 2. However, in case 1, we have by inequality 4.3

f(opti−1)− f(opti) ≤ ri

while in case 2, inequality 4.5 implies

f(opti−1)− f(opti) ≤ 0

We can thus compute the expectation E
[
f(opti−1)− f(opti)

]
as follows

E
[
f(opti−1)− f(opti)

]
≤ ai
ai + ri

· ri +
ri

ai + ri
· 0 =

airi
ai + ri

(4.7)

Now the RHS of the required inequality 4.2 can be written as

1

2
· E
[
f(Xi)− f(Xi−1)

]
+

1

2
· E
[
f(X̂i)− f(X̂i−1)

]
Let’s look at these two expectations separately. For E

[
f(Xi)−f(Xi−1)

]
, we are in case 1 with probability

ai

ai+ri
and by equation 4.4

f(Xi)− f(Xi−1) = ai

With probability ri
ai+ri

we are in case 2, and because X̂i−1 = X̂i, we have

f(X̂i)− f(X̂i−1) = 0

Consequently, we derive

1

2
· E
[
f(Xi)− f(Xi−1)

]
=

1

2
·
(

ai
ai + ri

· ai +
ri

ai + ri
· 0
)

=
1

2
· a2i
ai + ri

For E
[
f(X̂i)− f(X̂i−1)

]
, case 1 admits X̂i = X̂i−1 thus

f(X̂i)− f(X̂i−1) = 0

while case 2 admits
f(X̂i)− f(X̂i−1) = ri (4.8)

by equation 4.6. The expectation is thus:

1

2
· E
[
f(Xi)− f(Xi−1)

]
=

1

2
·
(

ai
ai + ri

· 0 +
ri

ai + ri
· ri
)

=
1

2
· r2i
ai + ri

Combining these two expectations, we derive

1

2
· E
[
(f(Xi)− f(Xi−1)) + (f(X̂i)− f(X̂i−1))

]
=

1

2
· a

2
i + r2i
ai + ri

(4.9)

Now for any ai, ri we have that
airi
ai + ri

≤ 1

2
· a

2
i + r2i
ai + ri

since (ai − ri)2 ≥ 0. By equations 4.9 and 4.7 we can conclude that

E
[
f(opti−1)− f(opti)

]
≤ 1

2
· E
[
(f(Xi)− f(Xi−1)) + (f(X̂i)− f(X̂i−1))

]
as required.

By claim 4.2, we need not consider the case ai < 0 and ri < 0. In all cases, at least for i /∈ opt, the required
inequality 4.2 holds thus completing the proof sketch.

Lecture 4: Submodular Maximization Part 2 7

4.3 Concluding Remarks

The search for an optimal approximation algorithm for maximizing a non-monotone submodular function has
a storied history. The study of this problem first began in the 1960s. A number of algorithms discovered
during this period either focused on special cases, or provided outputs without provable guarantees [6, 8, 5].
It wasn’t until 2007, when Feige, Mirrokni and Vondrák first provided a rigorous study of the problem [3]. In
their paper, they prove the following hardness result:

Theorem 4.5. For any ε > 0, there does not exist (1
2 + ε)-approximation algorithm for maximizing a

non-monotone submodular function using polynomial number of queries to an oracle access.

Think of an access oracle as some black-box that provides the value of the submodular function f given
S ⊆ E. Additionally, they give a number of constant factor approximation algorithms for maximizing a
non-montone submodular function – notably a 0.4-approximation using local search.

For the next five years, improvements to the approximation algorithm seemed to add complexity while
only making incremental gains in the approximation ratio. Gharan and Vondrák [7] first improved the
algorithm to provide a 0.41-approximation using a technique called simulating annealing. Feldman, Naor,
and Schwartz [4] then provided a more nuanced analysis to increase the approximation ratio to 0.42. Finally
in 2012, Buchbinder, Feldman, Naor, and Schwartz [2] published the 0.5-approximation discussed above,
providing a remarkably simple algorithm that achieved optimality without requiring complex analysis seen in
preceding work. The problem of derandomizing the double greedy algorithm was resolved only in the past
year by [1].

References

[1] N. Buchbinder, & M. Feldman. “Deterministic algorithms for submodular maximization problems.” In
ACM Transactions on Algorithms (2018), 14(3), 32.

[2] N. Buchbinder, M. Feldman, J. Seffi, & R. Schwartz. “A tight linear time (1/2)-approximation for
unconstrained submodular maximization.” In SIAM Journal on Computing (2015), 44(5), 1384-1402.

[3] U. Feige, V. Mirrokni & J. Vondrák. “Maximizing non-monotone submodular functions.” In FOCS
(2007), 461–471.

[4] M. Feldman, J. Naor, and R. Schwartz. “Nonmonotone submodular maximization via a structural
continuous greedy algorithm.” In ICALP (2011), 342–353.

[5] Goldengorin, B., & Ghosh, D. (2005). “A multilevel search algorithm for the maximization of submodular
functions applied to the quadratic cost partition problem.” In Journal of Global Optimization, 32(1),
65-82.

[6] Goldengorin, B., Sierksma, G., Tijssen, G. A., & Tso, M. (1999). “The data-correcting algorithm for the
minimization of supermodular functions.” In Management Science, 45(11), 1539-1551.

[7] S. O. Gharan & J. Vondrák. “Submodular maximization by simulated annealing.” In SODA (2011),
1098–1117

[8] Khachaturov, V. R. (1968). “Some problems of the consecutive calculation method and its applications
to location problems” (Doctoral dissertation, Ph. D. thesis, Central Economics & Mathematics Institute,
Russian Academy of Sciences, Moscow, 1968 (in Russian)).

	Unconstrained Submodular Maximization
	Maximizing Non-monotone Submodular Functions
	The Double Greedy Algorithm
	Analysis

	Concluding Remarks

