Approximation Algorithms Spring 2019

Lecture 4: Submodular Maximization Part 2

Scribe: Antares Chen 3/6/2019

We conclude our discussion of maximizing submodular functions with the double greedy algorithm for
unconstrained submodular maximization due to Buchbinder, Feldman, Naor, and Schwartz [2].

4.1 Unconstrained Submodular Maximization

Previously, we provided two examples for problems that are modeled by maximizing a submodular function
under cardinality constraints: maximizing float among bank accounts, and maximizing social influence.
However, many more problems are captured when cardinality constraints and guaranteed monotonicity are
not provided.

Recall the problem of maxcut. Given G = (V, E') where each edge has weight w. > 0, our goal is to choose a
cut such that the total weight of edges crossing the cut is maximized. More precisely, we wish to find S C V
such that the following function is maximized.

s= 3w (1.1)

e€E(S,V—5)

where E(S,V = S) = {(u,v) € E:u € S and v € V — S}. The objective function for maxcut is submodular.
Claim 4.1. For a graph G = (V, E) with edge weights w., the function f defined in equation 1s submodular.

Proof. Recall that f is submodular if and only if for all S, 7 C V we have that f(SUT)+f(SNT) < f(S)+f(T).
Now, a sum of submodular functions is also submodular, thus to demonstrate that f(S) is submodular, we
will show that it is a sum of submodular functions. Define f, : 2V — R>q for each edge e € F as

w, ifee E(S,V -5
fe(S) = ()
0 otherwise

Suppose e = (u,v) and consider any S,T C V. To see that f. is submodular, we verify three cases.
1. S, T either contain none or both of u,v. In this case we have that
F(SUT)+ f(SNT)=0=f(S)+ f(T)
2. S, T contain the same one of u,v. Without loss of generality, suppose u € S and u € T. Observe that

fEUT)+f(SNT) = f{u}) + f{u}) =2 we = f(5) + £(T)

Lecture 4: Submodular Maximization Part 2 2

3. S, T contain one of but different u,v. Without loss of generality, suppose u € S and v € T. Observe that

fSUT)+ f(SNT) = f({u,v}) + f(9) =0 < 2-we = f({u}) + f({v}) = f(S) + f(T)
In all cases, f. satisfies submodularity. Finally, because f(S) = > cp fe(S), we have that f is submodular. [

However, the maxcut objective is certainly not monotone as the edge weights may be non-zero but f(V) = 0.

4.2 Maximizing Non-monotone Submodular Functions

Let us precisely define the problem of maximizing a non-monotone submodular function, sometimes called
unconstrained submodular mazimization. Given E = [n] a ground set of elements, we wish to choose S C E
such that a submodular function f : 2¥ — Rs(is maximized. We now present the double greedy algorithm
due to Buchbinder, Feldman, Naor, and Schwartz. The algorithm provided a simple resolution to a problem
that had been studied since the 1960s. We further discuss the history of this problem in the
[Remarks] section.

4.2.1 The Double Greedy Algorithm

The double greedy algorithm iterates through elements of E deciding whether or not to add an element ¢ to a
maintained solution by computing what is gained by adding 4 or ignoring it. More precisely, if E = [n] is our
ground set and f : 2€ — R>(our submodular function, then the algorithm proceeds as follows:

Double Greedy
Given ground set E and submodular function f : 2F — Rx, initialize Xo = @. Do fori =1,...,n:

1. Compute a; and r; according to the following:
a; = f(Xi—1 U{i}) — f(Xio1) Ty = f(Xifl —{i}) - f(Xifl)

2. If a; > 0 and r; < 0, then update:
X;=X;-1U{i}

3. If r; > 0 and a; < 0, then update:
Xi =X

4. If a; > 0 and r; > 0, then randomly update X; according to the following probability:

Xi _ Xi,1 @] {Z} w.p. aiifri
Xi—l W.p.

This algorithm iteratively builds a solution X; and it decides whether or not to add ¢ based on computing a;
and r;. These two values measure what is gained in f if ¢ is either added to X;_; or ignored.

Lecture 4: Submodular Maximization Part 2 3

- If one gains more by adding 4, i.e. a; > 0 while r; < 0, then ¢ should be added to X;_1.

- If one gains more by ignoring i, i.e. r; > 0 while a; < 0, then i should be ignored.

But what should one do when adding and ignoring i both increase the value of the solution the algorithm
maintains? Why not flip a biased coin. Add i to X;_; with probability weighted by how much is gained by
either action. Indeed, this is why the algorithm is called “double greedy.” It greedily chooses either to add or
ignore ¢ depending on how much it benefits the cost of the maintained solution. If either choice yields benefit,
then tiebreak randomly.

One may notice that there is a forth case. What if both actions decrease the value of the maintained solution,
iea; <0andr; <0. This is not possible! Doing something will always increase the cost of X;. Before
showing this, let us first define the set X; as follows:

Think of X; as the set of items that are in X; along with what could potentially be added in future iterations.
It is not always the case that X; # X; always, but it does hold in general that

Let’s also think of how X; changes based on whether step 2 or 3 is executed in the double greedy algorithm.

- If a; > 0 and r; < 0, then)A(l = Xi—l as 7 is added to X;_1

- If a; <0 and r; > 0, then Xi=X,1— {3} as i is will never be considered for addition in the future.

We now prove that doing anything always benefits the cost of the maintained solution.

Claim 4.2. a; +r; >0 for all 1.

Proof. Notice that X;_1 C X, 4 — {i}. By submodularity, we have that
F(Xio1) = f(Ximr = {i}) < f(Xim1 U{i}) — (X))

However, X;_; = (X;_1 — {i}) U {i} meaning the above inequality becomes

F(Xi = {i) U {}) — F(Xioq — {3}) < F(Xima U{a}) — F(X))

The LHS of that above is —r; while the RHS is a;. Thus —r; < a; which is equivalent to that required. [

4.2.2 Analysis

Since maxcut is an NP-hard problem, we cannot expect to determine the optimal set S C F that maximizes
a submodular f efficiently unless P = NP. Thus we seek to bound the approximation ratio of a solution
produced from this algorithm. Let opT C E be the optimal solution and define OPT; as follows:

orT; = X; U (opTN{i+1,...,n})

Lecture 4: Submodular Maximization Part 2 4

Consider OPT; as a sliding window of elements from OPT to X; since we have OPTy = OPT while OPT,, = X,,.
Because the double-greedy algorithm is stochastic, our statements will hold in expectation. More precisely,
we will require the following lemma.

Lemma 4.3. Foralli=1,...,n, the following holds

: E[(f(Xz) - f(Xiz1)) + (f(Xz) - f(Xi—l))] (4.2)

DN | =

E[f(oPTi1) = f(oPTy)] <

We defer the proof of this statement for now and show how this implies a bound on the approximation ratio.

Theorem 4.4. The double greedy algorithm provides a %—appmm‘mation for mon-monotone submodular
maximization on expectation.

Proof. Consider the sum Y. | E[f(0PT;_1) — f(OPT;)] and notice lemma (4.3 implies the following bound

n n

> E[f(oPT;_1) — f(oPT;)] < % D CE[(A(X) = f(Xis1)) + (F(X) = f(Xioy)]

- % : (Z (ELf(X:)] - E[f(Xim)]) + > (E[f(X:)] - E[f(&-ﬂD)

i=1 i=1

Both sums are telescoping thus we have

- (E[f(Xn)] — E[f(Xo)] + E[f(X,)] — E[f(X0)])

N

Z]E[f(OPTZ-,l) — f(opTy)] <

i=1

Notice that f(Xo) = f(2) = 0 while f(X,) = f(X,) implying E[f(X,)] is also 0. Meanwhile, f(Xo) = f(E)
meaning E[f(X()] is a constant that is at least 0. We can conclude that

- (ELf(Xa)] = E[f(X0)] + E[f(Xa)] — E[f(X0)]) < 5 - (ELf(Xa)] +E[f(X0)])

(BLF (X)) + E[F (X))
[f(X0)]

IN

N -
H ol— o) =

However, 31" | E[f(0PT;_1) — f(OPT;)] is telescoping and equal to

n

> E[f(opTi_y) — f(oPTy)] = E[f(0PTy)] — E[f(0PT,)] = f(0PT) — E[f(X,)]

i=1

Thus we have

as required. O

Lecture 4: Submodular Maximization Part 2 5

The final step in our analysis is to demonstrate lemma[4.3] The proof of this lemma proceeds by checking
that inequality holds for every conceivable case of the algorithm. Our case work splits based on whether
or not i € OPT, a; > 0 and r; > 0 for every iteration i. As a broad overview of the proof, notice for the cases
where a; > 0 and r; < 0 as well as a; < 0 and r; > 0 the element ¢ is added / ignored deterministically, thus
we need not concern ourselves with computing an expectation. Additionally, we would have that a; > r; or
r; > a; respectively. The brunt of the proof is thus use submodularity to appropriately relate the left and
right side of inequality to either a; or r; then use the fact that either a; > r; or r; > a; to conclude the
inequality.

In the case where we need to flip a biased coin, we fall back to the first two cases with a certain weighted
probability. Consequently, the expectation that we need to compute recycles the same computation performed
in the first two cases of our analysis. We will provide a sketch of the argument for the case when i ¢ OPT.
The analysis for i € OPT is similar.

Proof sketch of lemma[f.3 Assume that i ¢ oPT. We verify inequality for the following cases.

1. Suppose a; > 0 and r; < 0: element 7 is added to the maintained solution X; ;1 deterministically. Since
i ¢ oPT, we have that

OPT;_1 = X; 1U(opTN{i,...,n}) C(X;U{i+1,...,n}) — {i} = X; — {i}
thus by submodularity of f, we can conclude that
F(Xio = {ih) u{i}) = f(Xia = {i}) < fopr,y U{i}) — f(OPT; 1)

Now, there are a couple things to notice about this inequality. Focusing on the LHS, we have that
OPT;_1 U{i} = OPT; because i is added to X;_;. Next consider the RHS. The set (X X1 —{i})u{i}is
just X;_; meaning the RHS is equivalent to f(X;_1)— f(Xi_1 —{i}), but f(X;_1)—f(Xi_1—{i}) = —
by definition. This reasoning allows us to conclude

f(OPTifl) — f(OPTi) <r; (43)

Let us now expand % - Q.

1
— - a; =

2

((FXU{a)) = f(Xim)) + (F(X0) = F(Ximn)) (44)

DN | =

(X U{i}) = f(Xin)) =

DN =

The addition of term f(XZ) — f(XZ-,l) follows as f(XZ) — f(XZ-,l) = 0. This is because X; = X;_1
since ¢ is added to X;_;. By assumption r; < 0 and a; > 0 thus r; < % -a;. The above calculations
combine to derive the required inequality.

2. Suppose a; < 0 and r; > 0: element i is ignored from the maintained solution meaning X; ; = X;.
Consequently oPT;_; = OPT;. We thus have that

f(opT;_1) — f(oPT;) =0 (4.5)

Certainly, 0 < r; thus expanding out r; derives

1.
2
1

-y =

5 ((f(XU{a}) — fF(Xim1)) + (F(Xi) — f(Xi—l))) (4.6)

| =

(f(Xia U {i}) - f(Xion)) =

N | =

The addition of term f(X; U {i}) — f(X;—1) follows as f(X; U {i}) — f(X;—1) = 0 because X; = X;_1.
Combining our calculations for this case derives the required inequality.

Lecture 4: Submodular Maximization Part 2 6

3. Suppose a; > 0 and r; > 0: With probability - we fall into case 1, and with probability - into
case 2. However, in case 1, we have by inequalfty o
f(opT;_1) — f(opT;) <y
while in case 2, inequality implies
flopT;_1) — f(opPT;) <0
We can thus compute the expectation E[f(0PT;_1) — f(0PT;)| as follows
E[f(oPTi_1) — f(OPT;)] < . T+ ai:iri 0= a?i:iri (4.7

Now the RHS of the required inequality can be written as
1 1 . .
3 'E[f(Xi) - f(Xzel)] + 5 'E[f(Xi) - f(Xz;l)]

Let’s look at these two expectations separately. For E [f(Xi) —f(Xi_l)] , we are in case 1 with probability
o4 and by equation

f(Xo) = f(Xic1) = a

With probability a,:fr, we are in case 2, and because X1 =)A(i, we have

FX) = f(Xim) =0
Consequently, we derive
1

1 a; T 1 a?
i'E[f(Xi)_f(XFl)] T2 (ai—i-m it a; +1; .0> T2 a; + 15

For IE[f(Xl) - f()z'i,l)], case 1 admits X; = X;_; thus

f(Xi) = f(Xiz) =0

while case 2 admits

F(X) = f(Xic) =1 (4.8)
by equation [4.6} The expectation is thus:

1 1 a; T 1 r2
ZLEMF(X) — f(X._)] = = .) o) = =t
2 [f(1) f(¢ 1)] 2 (ai—kn 0+ a; +1; ’/‘1> 2 a; +1;
Combining these two expectations, we derive
1 . . 1 a?+r?
B E[(f(Xi) = f(Xi1) + (F(Xi) = f(Xio1))] = 2wt (4.9)

Now for any a;,r; we have that
airi 1 a? +r?
a;+r; 2 a;+r;
since (a; — 7"1-)2 > 0. By equations and we can conclude that

E[f(0PT;) ~ foP1)] < 5 B[(f(X0) = f(Xii1) + (F(X) = F(Xi1))]

as required.

By claim we need not consider the case a; < 0 and r; < 0. In all cases, at least for i ¢ OPT, the required
inequality [£.2] holds thus completing the proof sketch. O

Lecture 4: Submodular Maximization Part 2 7

4.3 Concluding Remarks

The search for an optimal approximation algorithm for maximizing a non-monotone submodular function has
a storied history. The study of this problem first began in the 1960s. A number of algorithms discovered
during this period either focused on special cases, or provided outputs without provable guarantees [6l 8 [5].
It wasn’t until 2007, when Feige, Mirrokni and Vondrdk first provided a rigorous study of the problem [3]. In
their paper, they prove the following hardness result:

Theorem 4.5. For any € > 0, there does not exist (% + €)-approximation algorithm for maximizing a
non-monotone submodular function using polynomial number of queries to an oracle access.

Think of an access oracle as some black-box that provides the value of the submodular function f given
S C E. Additionally, they give a number of constant factor approximation algorithms for maximizing a
non-montone submodular function — notably a 0.4-approximation using local search.

For the next five years, improvements to the approximation algorithm seemed to add complexity while
only making incremental gains in the approximation ratio. Gharan and Vondrak [7] first improved the
algorithm to provide a 0.41-approximation using a technique called simulating annealing. Feldman, Naor,
and Schwartz [4] then provided a more nuanced analysis to increase the approximation ratio to 0.42. Finally
in 2012, Buchbinder, Feldman, Naor, and Schwartz [2] published the 0.5-approximation discussed above,
providing a remarkably simple algorithm that achieved optimality without requiring complex analysis seen in
preceding work. The problem of derandomizing the double greedy algorithm was resolved only in the past
year by [1].

References

[1] N. Buchbinder, & M. Feldman. “Deterministic algorithms for submodular maximization problems.” In
ACM Transactions on Algorithms (2018), 14(3), 32.

[2] N. Buchbinder, M. Feldman, J. Seffi, & R. Schwartz. “A tight linear time (1/2)-approximation for
unconstrained submodular maximization.” In STAM Journal on Computing (2015), 44(5), 1384-1402.

[3] U. Feige, V. Mirrokni & J. Vondrak. “Maximizing non-monotone submodular functions.” In FOCS
(2007), 461-471.

[4] M. Feldman, J. Naor, and R. Schwartz. “Nonmonotone submodular maximization via a structural
continuous greedy algorithm.” In JCALP (2011), 342-353.

[5] Goldengorin, B., & Ghosh, D. (2005). “A multilevel search algorithm for the maximization of submodular
functions applied to the quadratic cost partition problem.” In Journal of Global Optimization, 32(1),
65-82.

[6] Goldengorin, B., Sierksma, G., Tijssen, G. A.; & Tso, M. (1999). “The data-correcting algorithm for the
minimization of supermodular functions.” In Management Science, 45(11), 1539-1551.

[7] S. O. Gharan & J. Vondrak. “Submodular maximization by simulated annealing.” In SODA (2011),
1098-1117

[8] Khachaturov, V. R. (1968). “Some problems of the consecutive calculation method and its applications
to location problems” (Doctoral dissertation, Ph. D. thesis, Central Economics & Mathematics Institute,
Russian Academy of Sciences, Moscow, 1968 (in Russian)).

	Unconstrained Submodular Maximization
	Maximizing Non-monotone Submodular Functions
	The Double Greedy Algorithm
	Analysis

	Concluding Remarks

