
Approximation Algorithms Spring 2019

Lecture 2: A Greedy 2-approximation for k-center

Scribe: Ida Huihan Liu 2/15/2019

In this note, we begin our discussion on greedy approximation algorithms by considering the k-center problem.
We provide a 2-approximation algorithm due to Gonzalez [1].

2.1 What is a Greedy Algorithm?

Greedy algorithms construct a solution step by step. At each step of the algorithm, it constructs the next
part of the solution by making some decision that is locally the best possible. Consequently, the decision
made by the greedy algorithm at each step will always be in the final solution. How does a greedy algorithm
make decisions? Usually it is by some information we can retrieve from the structure of the problem. This
guiding information is called the heuristics, which is how greedy algorithm choose a certain action to take or
not to take. Choosing the right heuristic is central to the correctness and effectiveness of greedy algorithm.

Problems that can be successfully solved by the greedy algorithm typically admit special structure in the
form of an optimal solution that is composable. For example, Kruskal’s Algorithm for finding the minimum
spanning tree of the graph exploits the fact that the smallest edge across any cut will always be part of some
minimum spanning tree. Iteratively choosing the minimum cost edge without introducing a cycle is thus
guaranteed the optimal solution. Not all problems admit this structure however. Last week, we discussed a
greedy approximation for set cover. The following example shows that the greedy heuristic does not always
find the optimal solution: whereas the optimal choice is to cover the following nine points with sets B, C,
and D, the greedy algorithm will choose A and then be forced to select the rest of the sets.

Though greedy approaches may not optimally solve a problem, they can still provide approximations that
are provably good, and even optimal under certain hardness assumptions such as P = NP. Moreover, greedy
algorithms are often very simple to describe and efficient to implement. To understand both the power and
limitations of the greedy algorithm, let us examine its application on a classical problem: k-center.

1

Lecture 2: A Greedy 2-approximation for k-center 2

2.2 The k-center Problem

Let’s say we have a large amount of data, some of them are similar, some are dissimilar. We want to group
similar data together, possibly in a certain number of groups. We want to select some data points among all
our data to be the cluster centers so that we can match each data to the nearest cluster center, hence find
the clusters themselves.

This is a fairly reasonable problem to study because it tells some innate structure of our data, and how the
data points relate to each other. It also arises in many real world situations: for example, Netflix users like
different kinds of movies. A way of recommending similar moves may involve grouping customers that have
similar movie interests together.

2.2.1 Problem Definition

In the k-center problem, we are given a set of vertices V , a distance function d : V × V → R≥0, and an
integer k > 0 where the distance function induces a metric on elements of V . More precisely, d(·, ·) must
satisfy the following properties.

(1) Positive semidefiniteness: d(x, y) ≥ 0 for all x, y ∈ V and d(x, y) = 0 if and only if x = y.

(2) Symmetric: d(x, y) = d(y, x).

(3) Triangle inequality: d(x, y) ≤ d(x, z) + d(z, y).

Our objective is to find a set S of k vertices, called cluster centers, such that the maximum distance of any
vertex to its cluster center is minimized where i ∈ V is assigned to the cluster centered around the closest
s ∈ S. We will write the distance of i to its center in short-hand as

d(i, S) = min
s∈S

d(i, s)

Given our cluster centers S, we will also denote the radius of S as the following:

r = max
i∈V

d(i, S)

We can then restate our objective as finding S that minimizes the radius of S. That is we find S subject to

min
S⊆V :|S|=k

max
i∈V

d(i, S)

Why ask only for the cluster centers, and not the clusters themselves? The objective function allows us to
efficiently recover the clusters given the clusters via a simple scan: for each vertex i, iterate through k cluster
centers to find the closest one, and place i in the partition belonging to the chosen center.

Lecture 2: A Greedy 2-approximation for k-center 3

2.3 A Greedy Algorithm

What will be a good heuristics for the k-centering problem? Intuitively, we want the centers we pick to be as
spread out as possible, so that (1) all vertices in the graph possess a chance of having a nearby vertex as
their centers, and (2) anomaly vertices that are far away from other vertices do not contribute too much to
the maximum distance.

Our algorithm is thus; first pick a vertex i ∈ V arbitrarily and put it in our set S of cluster centers. It then
makes sense for the next cluster center to be as far away as possible from all the other cluster centers. While
|S|< k, repeatedly find a vertex j ∈ V for which the distance d(j, S) is maximized (or in other words, which
determines the diameter of set S). Add it to S. Once |S|= k, we stop and return S.

The Greedy Algorithm for k-Centering
Pick arbitrary s ∈ V and initialize S = {s}. Do while |S|< k:

1. s← argmaxs∈V d(s, S)

2. Update S ← S ∪ {s}

It is certainly the case that this algorithm is not optimal. Consider the following example for k = 3 where
the points are placed according to euclidean distance.

We see that cluster centers achieving minimal radius are given by A∗, B∗, and C∗, while, if A is chosen as
the first cluster center, the greedy algorithm will choose A, B, and C.

2.3.1 Approximation Analysis

How good of an approximation does the greedy algorithm return? We can compare the greedy solution
returned by the algorithm to an optimal solution. That is to say, we measure the effectiveness of this algorithm
by bounding the approximation ratio.

Theorem 2.1. The greedy algorithm produces a 2-approximation algorithm for the k-clustering problem.

Proof. Let S∗ = {s1, . . . , sk} denote the optimal solution, and let r∗ denote its radius. This optimal solution
partitions the nodes V into clusters V ∗1 , . . . , V

∗
k , where each point i ∈ V is placed in V ∗` if it is closest to s`

among all of the points in S∗. Ties are broken arbitrarily.

Lecture 2: A Greedy 2-approximation for k-center 4

First, observe that each pair of points i and j in the same cluster V ∗` are at most 2r∗ apart. According to the
triangle inequality, the distance d(i, j) between them is at most the sum of d(i, s`), the distance from i to the
center s`, and d(j, s`), the distance from the center s` to j. Both distances are bounded by r∗ thus:

d(i, j) ≤ d(i, s`) + d(j, s`) ≤ r∗ + r∗ = 2r∗

Now consider the set S ⊆ V of points selected by the greedy algorithm and consider the first iteration where
the algorithm selects a point i ∈ V ∗` to add to S, even though the algorithm had already selected a point
i′ ∈ V ∗` in an earlier iteration. Prior to i′ being added, each center added to S were chosen from separate
optimal clusters of S∗. For all points j covered by centers added prior to i′, we must have d(j, S) ≤ r∗ by the
argument above. Because the greedy algorithm always selects points furthest away from the current set of
points in S, every other point j ∈ V where j has not been added to S must have distance bounded by

d(j, S) ≤ d(i′, i)

otherwise, j should have been added to S prior to i′. However, i and i′ belong to the same optimal cluster V ∗`
hence d(i′, i) ≤ 2r∗. Hence for all points covered after i′ is added to the cluster centers, the distance between
it and its nearest center is also bounded by at most 2r∗. We have for all points i ∈ V , the distance is bounded
by d(i, S) ≤ 2r∗. If r represents the radius of S returned by our greedy solution, we can conclude that:

r∗ ≤ r ≤ 2 · r∗

implying the algorithm returns a 2-approximation as required.

2.3.2 Hardness of Approximation

The problem of finding optimal S for an instance of k-center is NP-hard hence why we seeked an approximation
algorithm to begin with. However, we can ask an equally important question: how hard is it to approximate
k-center within some approximation ratio? Admittedly, the greedy algorithm for k-center is not terribly
difficult to explain nor implement. However, can there be an efficient algorithm that provides a better
approximation? We will now show that this mission is impossible, unless P = NP.

Theorem 2.2. There is no α-approximation algorithm for the k-center problem for α < 2 unless P = NP.

In general, how do we prove that a problem is “hard”? One common way is to reduce another hard problem
to it. Recall that, given two problems A and B and a black-box solver B, if we can produce a procedure
that transforms an input of A to B, then we say that A reduces to B. Critically, this procedure must run in
polynomial time, allowing us to conclude that, if there is an efficient algorithm for B, then there must be an
efficient algorithm for A. In that sense, we think of problem B to be at least as hard as A. For k-center, if an
NP-hard problem can be reduced to producing an α-approximation for k-center problem where α < 2, then
finding an α-approximation to k-center problem with α < 2 will be NP-complete.

Consider the NP-hard problem of finding a dominating set. In the dominating set problem, we are given a
graph G = (V,E) and an integer k, and we must decide if there exists a set S ⊂ V of size k such that each
vertex is either in S, or adjacent to a vertex in S. We will now prove by reducing dominating set to finding
an α-approximate k-center problem for α < 2.

Lecture 2: A Greedy 2-approximation for k-center 5

Proof. Let us illustrate how to reduce dominating set to k-center. Given an instance of dominating set, we
can define an instance of k-center by setting the distance between adjacent vertices to 1, and non-adjacent
vertices to 2. These distances satisfy properties of a metric and, in particular, the triangle inequality as for
any three vertices x, y, z ∈ V , for any choice of d(x, y), d(y, z), and d(x, z) equal to 1 or 2, we satisfy

d(x, z) ≤ d(x, y) + d(y, z)

Observe there is a dominating set of size k if and only if the optimal radius for this k-center instance is 1. If
there is a dominating set D of size k, then choosing the cluster centers S = D will achieve radius 1 as every
vertex is adjacent to a vertex in D and hence be distance 1 away from a cluster center. If there is a choice
of k cluster centers S with radius 1, then by construction of the metric, each vertex v is adjacent to s ∈ S
meaning S is a dominating set.

The objective for k-center is to minimize the maximum distance of a vertex to its cluster center. The radius
cluster centers found from our reduction can only be 2 or 1. Now suppose we have an algorithm that returns
an α-approximation for k-center. If r∗ denotes the optimal cluster radius and r the radius of the approximate
cluster centers, the algorithm guarantees:

r∗ ≤ r ≤ α · r∗

If there is a dominating set in G with k vertices, then the radius of the optimal cluster centers will be r∗ = 1.
The approximation algorithm will guarantee:

1 ≤ r ≤ α

If there is not a dominating set, then the optimal radius will be r∗ = 2 and the algorithm guarantees:

2 ≤ r ≤ α · 2

For α such that these two ranges are non-overlapping, then the α-approximation for k-center will correctly
distinguish whether or not G has a dominating set of size k. These two ranges are non-overlapping when
α < 2, which means if there is an α-approximation for k-center, then there exists a polynomial time algorithm
for dominating set. We conclude that unless P = NP, there is no polynomial time α-approximation for
k-center where α < 2.

2.4 Conclusion

Greedy approaches often tend to be simple to describe and implement, but this should not be discounted as
we demonstrated, perhaps surprisingly, that our algorithm for k-center achieves an optimal approximation
ratio of 2 unless P = NP. We will continue our study of greedy approximation algorithms by discussing yet
another famous NP-hard problem next – traveling salesman.

References

[1] Gonzalez, T. F. (1985). “Clustering to minimize the maximum intercluster distance.” In Theoretical
Computer Science, 38, 293-306.

	What is a Greedy Algorithm?
	The k-center Problem
	Problem Definition

	A Greedy Algorithm
	Approximation Analysis
	Hardness of Approximation

	Conclusion

