1 Introduction

Graph coloring is an optimization problem that involves – in one of its simplest cases – vertex coloring: assigning the vertices in a particular graph to different colors such that no two adjacent vertices are the same color. A graph is considered \(n \)-colorable when this can be done with a set of \(n \) colors, but in this section we will focus on arbitrary 3-colorable graphs \(G = (V, E) \) where there are \(|V|\) total vertices and \(O(\sqrt{|V|}) \) colors are used. We will see that a semidefinite programming algorithm that achieves this can be done in \(\tilde{O}(n^{0.387}) \) time \((n = |V|)\).

2 The meaning of \(\tilde{O} \)

Definition: Similarly to \(O \)-notation, \(\tilde{O} \) is a way of writing upper bounds; some function \(g(n) = \tilde{O}(f(n)) \) if \(g(n) \) can be written in the following form: \(g(n) = O(f(n)\log^c(n)) \) where \(n \geq \) some constant \(n_0 \), constant \(c \geq 0 \).

2.1 A \(\sqrt{n} \)-coloring algorithm

Graph coloring is a difficult approximation problem, but some special cases e.g. 2-coloring, (max degree + 1)-coloring can be solved in polynomial time. Looking closer at 2-coloring, we can give an algorithm in which – given some graph \(G \) – we start at an arbitrary vertex \(v \), assigning it Color A. Hence, all of \(v \)'s neighbors are forced to be assigned Color B. For each of these 1st-level connections, we repeat the process, selecting the opposite color (Color A), continuing until either the entire graph is colored or we run into a bad coloring i.e. 2 vertices that share an edge have been assigned the same color. If there is any such bad coloring, the graph is not 2-colorable because all of our coloring decisions were forced. Hence, we see that our algorithm is linear in terms of the number of vertices in \(G \).

Likewise, considering (max degree + 1)-coloring, we provide an algorithm in which we select arbitrary vertices \(v \) repeatedly and assign unique colors to each of \(v \bigcup N(v) \) \((N(v) \) represents the neighborhood of vertices immediately adjacent to \(v \)). Because we always have a maximum of (max degree + 1) assignments to make considering any \(v \) individually and exactly that many colors available, we will never encounter a conflict in which we run out of unique colors and create a bad coloring.

Knowing that 2-coloring and (max degree + 1)-coloring can be done in polynomial time, we can come up with an algorithm for coloring a 3-colorable graph \(G = (V, E) \) with \(O(\sqrt{n}) \) colors:

while \(v \in V \) s.t. \(\deg(v) \geq n \):
 pick 3 new colors: A, B, C
 color \(v \) with A
 // the below is possible because \(G \) is known to be 3-colorable
 use the 2-coloring algorithm described above to color \(N(v) \) with B, C
 remove the colored vertices from the graph
 use the (max degree + 1)-coloring algorithm described above to color the rest of the vertices with \(\sqrt{n} \) colors maximum
2.2 Proof of max-$4\sqrt{n}$ colorability

Claim: The algorithm for $O(\sqrt{n})$ coloring as described above can color any 3-colorable graph $G = (V, E)$ with max $4\sqrt{n}$ colors.

Proof: According to the pseudocode above, whenever we find v s.t. $\text{deg}(v) \geq \sqrt{n}$, we pick 3 new colors. Because we remove $v \cup N(v)$ at the end of the iteration, the loop will run max $\sqrt{n} \cdot \sqrt{n}$ times. This means using max $3\sqrt{n} = 3\sqrt{n}$ colors throughout the while loop overall. We know that the final step, which uses the $(\text{max degree} + 1)$-coloring algorithm, will use \sqrt{n} new colors total, so the number of unique colors used in the algorithm is upper-bounded by $3\sqrt{n} + \sqrt{n} = 4\sqrt{n}$ colors total.

3 A semidefinite programming algorithm

We’d like to come up with an algorithm that will more strictly upper-bound the number of colors used to appropriately color a 3-colorable graph. The below is a vector program with a vector v_i corresponding to every vertex $i \in V$:

\[
\begin{align*}
\text{minimize} & \quad \lambda \\
\text{subject to} & \quad v_i \cdot v_j \leq \lambda, \forall (i, j) \in E, \\
& \quad v_i \cdot v_i = 1, \forall i \in V, \\
& \quad v_i \in \mathbb{R}^n, \forall i \in V \text{ (we consider vectors in the real space only)}.
\end{align*}
\]

3.1 **Solving with $\lambda \leq -\frac{1}{2}$**

Claim: For an arbitrary 3-colorable graph, we can solve the vector program described above with $\lambda = -\frac{1}{2}$.

Proof: An example solution to this program is described by an equilateral triangle in which the unit vectors v_i corresponding to each vertex are matched with three different colors. The angle between vectors of the same color is 0 (only one vector per color in this solution), and the angle between vectors of different colors is $\frac{2\pi}{3}$ (3 vectors splitting the central 2π angle). Hence, as we have already satisfied condition (2) and (3) of the vector program, we show that (1) also holds:

\[v_i \cdot v_j = \|v_i\|\|v_j\|\cos(\frac{2\pi}{3}) = -\frac{1}{2}\]

Because there exists a solution s.t. $\lambda = -\frac{1}{2}$, for the optimal solution (which may or may not be this one), $\lambda \leq -\frac{1}{2}$.

3.2 **Solving with $v_i \cdot v_j = -\frac{1}{2}, \forall (i, j) \in E$**

Claim: For an arbitrary 3-colorable graph, we can solve the vector program described above with $v_i \cdot v_j = -\frac{1}{2}, \forall (i, j) \in E$.

Proof: To prove the claim, we first define the term semicoloring.

Definition: A semicoloring is a vertex coloring of a graph G ($n = |V|$) where $\leq \frac{n}{2}$ edges have vertex endpoints with the same color (bad colorings), indicating the $\leq \frac{n}{2}$ vertices are correctly colored (edge endpoints have different colors).

If we can come up with an algorithm that creates a k-semicoloring, we can color the whole graph with $k \log n$ colors. Initially, we semicolor with k colors and only consider correctly-colored vertices, which should be at minimum $\frac{n}{2}$ according to the definition above. Hence, the number of incorrectly-colored vertices is upper-bounded at $\frac{n}{2}$. We take k new colors and perform a k-semicoloring on the remaining vertices, which will leave $\leq \frac{n}{2}$ incorrectly-colored vertices, and so on. Following this pattern, there will be $\log n$ iterations until G is correctly colored. If k new colors are selected each time, this upper-bounds the total number of colors used at $k \log n$.

2
Everything we just described is based on the assumption that a randomized algorithm for generating a semicoloring exists. We solve the vector program described above, selecting \(t = 2 + \log_3 \Delta \) random vectors \(r_1, \ldots, r_t \) with \(\Delta = \max \text{deg}(G) \). The \(t \) random vectors will create \(2^t \) different regions for the vectors \(v_i \): (1) \(r_j \cdot v_i \geq 0 \), (2) \(r_j \cdot v_i < 0 \), \(\forall j \in [1, t] \). The vectors in each region are assigned different colors.

3.3 Probability of a \(4\Delta \log_3 2 \) semicoloring

Claim: The coloring algorithm semicolors \(4\Delta \log_3 2 \) colors with probability \(\geq 0.5 \).

Proof: Our algorithm created \(2^t \) different regions and assigned each a different color. Because \(t = 2 + \log_3 \Delta \), \(2^t = 2^{2+\log_3 \Delta} = 4 \cdot 2^{\log_3 \Delta} = 4\Delta \log_3 2 \) colors. We must now show that the probability that this occurs is \(\geq 0.5 \).

There are a few possibilities:

- For some edge \((i, j)\), endpoints \(i, j\) are assigned different colors. Because these vertices have been correctly colored, there is no need to consider them for re-coloring in the next iteration.

- For some edge \((i, j)\), endpoints \(i, j\) are assigned the same color. This is equivalent to the probability that \(i, j\) fall into the same region.

\[
P(1 \text{ random hyperplane separates } i, j) = \frac{1}{\pi} \arccos(v_i \cdot v_j)
\]

\[
P(t \text{ independent hyperplanes separate } i, j) = \left(\frac{1}{\pi} \arccos(v_i \cdot v_j)\right)^t
\]

\[
P(t \text{ independent hyperplanes do not separate } i, j) = \left(1 - \frac{1}{\pi} \arccos(v_i \cdot v_j)\right)^t
\]

\[
P(i, j \text{ are assigned the same color}) = \left(1 - \frac{1}{\pi} \arccos(v_i \cdot v_j)\right)^t \leq \left(1 - \frac{1}{\pi} \arccos(\lambda)\right)^t, \text{ following from the vector program definition}
\]

\[
(1 - \frac{1}{\pi} \arccos(\lambda))^t \leq (1 - \frac{1}{\pi} \arccos(-\frac{1}{2}))^t
\]

\[
(1 - \frac{1}{\pi} \arccos(-\frac{1}{2}))^t = (1 - \frac{1}{\pi} \cdot \frac{2\pi}{3})^t = \left(\frac{1}{3}\right)^t \leq \frac{1}{3^t}
\]

Hence, \(P(i, j \text{ are assigned the same color}) \leq \frac{1}{3^t} \).

If \(m = |E| \), \(m \leq \frac{n \Delta}{2} \) (recall \(n = |V| \), so if each vertex is of max degree, the number of edges will equal \(\frac{n \Delta}{2} \)). From above, the number of edges with same-colored vertices \(\leq \frac{m}{3^t} \leq \frac{n}{18} \). Create a random variable \(X = \text{number of edges with same-colored endpoints} \). By Markov’s inequality:

\[
P(X \geq \frac{n}{18}) \leq \frac{E[X]}{\frac{n}{18}} \leq \frac{n/18}{\frac{n}{18}} = \frac{2}{9} \leq \frac{1}{2}
\]

We know \(n \) upper-bounds max degree \(\Delta \), so this algorithm semicolors with \(O(n \log_3 2) = \tilde{O}(n \log_3 2) \) colors. This isn’t as good as our starting algorithm \(O(n^{1/2}) - \log_3 2 \approx 0.631 \geq 0.5 \), but we can improve using some of the ideas we’ve already explored.

Assume some parameter \(\sigma \). Our new algorithm is the following:

while \(v \in V \) s.t. \(\text{deg}(v) \geq \sigma \):
 pick 3 new colors: A, B, C
 color \(v \) with A
 \// the below is possible because \(G \) is known to be 3-colorable
 use the 2-coloring algorithm to color \(N(v) \) with B, C
 remove the colored vertices from the graph
use the semicoloring algorithm described above to color the rest of the vertices with \(O(\sigma \log_3 2) \) colors maximum
3.4 Probability of a $O(n^{0.387})$ semicoloring

Claim: The algorithm we just described semicolors with ≥ 0.5 probability any arbitrary 3-colorable graph with $O(n^{0.387})$ colors.

Proof: Our loop removes $\geq \sigma$ vertices in every iteration, so we use max $\frac{3n}{\sigma}$ colors overall (n total iterations, 3 new colors used in each one). If we set σ s.t. $\frac{n}{\sigma} = \sigma^{\log_3 2}$ or $\sigma = n^{\log_3 3} \approx n^{0.613}$, we can balance the number of colors used in both parts of the algorithm. Dividing our exponent by 2, we then have the algorithm overall using $O(n^{0.387})$ colors.