Coloring 3-Colorable Graphs Notes

Lily Bhattacharjee
May 22, 2019

1 Introduction

Graph coloring is an optimization problem that involves — in one of its simplest cases — vertex coloring:
assigning the vertices in a particular graph to different colors such that no two adjacent vertices are the same
color. A graph is considered n-colorable when this can be done with a set of n colors, but in this section we
will focus on arbitrary 3-colorable graphs G = (V, E) where there are |V| total vertices and O(1/|V]) colors
are used. We will see that a semidefinite programming algorithm that achieves this can be done in O(n0'387)
time (n = |V|).

2 The meaning of O

Definition: Similarly to O-notation, O is a way of writing upper bounds; some function g(n) = O(f(n))
if g(n) can be written in the following form: g(n) = O(f(n)log®(n)) where n > some constant ng, constant
c>0.

2.1 A /n-coloring algorithm

Graph coloring is a difficult approximation problem, but some special cases e.g. 2-coloring, (max degree +
1)-coloring can be solved in polynomial time. Looking closer at 2-coloring, we can give an algorithm in which
— given some graph G — we start at an arbitrary vertex v, assigning it Color A. Hence, all of v’s neighbors
are forced to be assigned Color B. For each of these 1st-level connections, we repeat the process, selecting
the opposite color (Color A), continuing until either the entire graph is colored or we run into a bad coloring
i.e. 2 vertices that share an edge have been assigned the same color. If there is any such bad coloring, the
graph is not 2-colorable because all of our coloring decisions were forced. Hence, we see that our algorithm
is linear in terms of the number of vertices in G.

Likewise, considering (max degree + 1)-coloring, we provide an algorithm in which we select arbitrary
vertices v repeatedly and assign unique colors to each of v|JN(v) (N(v) represents the neighborhood of
vertices immediately adjacent to v). Because we always have a maximum of (max degree + 1) assignments
to make considering any v individually and exactly that many colors available, we will never encounter a
conflict in which we run out of unique colors and create a bad coloring.

Knowing that 2-coloring and (max degree + 1)-coloring can be done in polynomial time, we can come
up with an algorithm for coloring a 3-colorable graph G = (V, E') with O(y/n) colors:

while v € V s.t. deg(v) > n:

pick 3 new colors: A, B, C

color v with A

// the below is possible because G is known to be 3-colorable

use the 2-coloring algorithm described above to color N(v) with B, C

remove the colored vertices from the graph
use the (max degree + 1)-coloring algorithm described above to color the rest of the vertices with /n colors
maximum



2.2 Proof of max-4,/n colorability

Claim: The algorithm for O(y/n) coloring as described above can color any 3-colorable graph G = (V, E)
with max 41/n colors.

Proof: According to the pseudocode above, whenever we find v s.t. deg(v) > /n, we pick 3 new col-
ors. Because we remove v|J N(v) at the end of the iteration, the loop will run max % times. This means

using max % = 34/n colors throughout the while loop overall. We know that the final step, which uses the

(max degree + 1)-coloring algorithm, will use v/ new colors total, so the number of unique colors used in
the algorithm is upper-bounded by 3/n + /n = 4y/n colors total.

3 A semidefinite programming algorithm

We’d like to come up with an algorithm that will more strictly upper-bound the number of colors used to
appropriately color a 3-colorable graph. The below is a vector program with a vector v; corresponding to
every vertex i € V:

minimize A
subject to v; - v; < A\, V(i,j) € E,
vi-v; =1L VieV,
v; € R Vi € V' (we consider vectors in the real space only)

3.1 Solving with \ < —%

Claim: For an arbitrary 3-colorable graph, we can solve the vector program described above with A\ = —%.

Proof: An example solution to this program is described by an equilateral triangle in which the unit

vectors v; corresponding to each vertex are matched with three different colors. The angle between vectors

of the same color is 0 (only one vector per color in this solution), and the angle between vectors of different
27

colors is % (3 vectors splitting the central 27 angle). Hence, as we have already satisfied condition (2) and

(3) of the vector program, we show that (1) also holds:
vi - vj = [[vill[vj|leos(5) = —3

Because there exists a solution s.t. A = —%, for the optimal solution (which may or may not be this one),
A< -1
=773

3.2 Solving with v;-v; = —3,V(i,j) € E

Claim: For an arbitrary 3-colorable graph, we can solve the vector program described above with v; - v; =
1 ..

—5,V(i,5) € E.
2 )

Proof: To prove the claim, we first define the term semicoloring.
Definition: A semicoloring is a vertex coloring of a graph G (n = |V|) where < Z edges have vertex

1
endpoints with the same color (bad colorings), indicating the < % vertices are correctly colored (edge end-
points have different colors).

If we can come up with an algorithm that creates a k-semicoloring, we can color the whole graph with
klogn colors. Initially, we semicolor with k colors and only consider correctly-colored vertices, which should
be at minimum § according to the definition above. Hence, the number of incorrectly-colored vertices is
upper-bounded at 5. We take k& new colors and perform a k-semicoloring on the remaining vertices, which
will leave < % incorrectly-colored vertices, and so on. Following this pattern, there will be logn iterations
until G is correctly colored. If k new colors are selected each time, this upper-bounds the total number of

colors used at klogn.



Everything we just described is based on the assumption that a randomized algorithm for generating a
semicoloring exists. We solve the vector program described above, selecting ¢ = 2 4 logs A random vectors
71, .., T, with A = max deg(G). The t random vectors will create 2¢ different regions for the vectors v;: (1)
rj-v; >0, (2) rj-v; <0, Vj € [1,t]. The vectors in each region are assigned different colors.

3.3 Probability of a 4A!°8:2 semicoloring

Claim: The coloring algorithm semicolors 4A!°8s 2 colors with probability > 0.5.

Proof: Our algorithm created 2! different regions and assigned each a different color. Because t = 2+logs A,
9t = 92+logs A — g 9logs A — JAlo8S colors. We must now show that the probability that this occurs is > 0.5.

There are a few possibilities:

e For some edge (4,5), endpoints i, j are assigned different colors. Because these vertices have been
correctly colored, there is no need to consider them for re-coloring in the next iteration.

e For some edge (7, ), endpoints i, j are assigned the same color. This is equivalent to the probability
that 4, 7 fall into the same region.

P(1 random hyperplane separates i, j) = - arccos(v; - v;)

P(t independent hyperplanes separate 4, j) = (% arccos(v; - vj))"
P(t independent hyperplanes do not separate i,5) = (1 — £ arccos(v; - v;))"

P(i, j are assigned the same color) = (1 — L arccos(v; - v;))" < (1 — 1 arccos(\))?, following from the

vector program definition
)

(1 - arccos(—4)) = (1 - 2+ ) = (1) < 5k

(1 — Larccos(N))! < (1 — L arccos(—

o=

Hence, P(i,j are assigned the same color) < i.

If m=|E|, m< % (recall n = |V, so if each vertex is of max degree, the number of edges will equal %)
From above, the number of edges with same-colored vertices < 9% < 1%. Create a random variable X =
number of edges with same-colored endpoints. By Markov’s inequality:

E[X]  n/18

n 2
P(XZZ)S n/4 = n/4:§S

1
2

We know n upper-bounds max degree A, so this algorithm semicolors with O(n!°82) = O(n'°%s2) colors.
This isn’t as good as our starting algorithm (O(n'/?)) — log; 2 =~ 0.631 > 0.5, but we can improve using
some of the ideas we’ve already explored.

Assume some parameter o. Our new algorithm is the following;:

while v € V s.t. deg(v) > o:

pick 3 new colors: A, B, C

color v with A

// the below is possible because G is known to be 3-colorable

use the 2-coloring algorithm to color N(v) with B, C

remove the colored vertices from the graph
use the semicoloring algorithm described above to color the rest of the vertices with O(c'°832) colors maxi-
mum



3.4 Probability of a O(n’3®7) semicoloring

Claim: The algorithm we just described semicolors with > 0.5 probability any arbitrary 3-colorable graph
with O(n%-387) colors.

Proof: Our loop removes > o vertices in every iteration, so we use max ‘%” colors overall (n total iter-
ations, 3 new colors used in each one). If we set o s.t. 2 0-613 ' we can balance
the number of colors used in both parts of the algorithm. Dividing our exponent by 2, we then have the
algorithm overall using O(n%387) colors.

= glo8s2 or ¢ = nlo8e3 = py



