
Coloring 3-Colorable Graphs Notes

Lily Bhattacharjee

May 22, 2019

1 Introduction

Graph coloring is an optimization problem that involves – in one of its simplest cases – vertex coloring:
assigning the vertices in a particular graph to different colors such that no two adjacent vertices are the same
color. A graph is considered n-colorable when this can be done with a set of n colors, but in this section we
will focus on arbitrary 3-colorable graphs G = (V,E) where there are |V | total vertices and O(

√
|V |) colors

are used. We will see that a semidefinite programming algorithm that achieves this can be done in Õ(n0.387)
time (n = |V |).

2 The meaning of Õ

Definition: Similarly to O-notation, Õ is a way of writing upper bounds; some function g(n) = Õ(f(n))
if g(n) can be written in the following form: g(n) = O(f(n)logc(n)) where n ≥ some constant n0, constant
c ≥ 0.

2.1 A
√
n-coloring algorithm

Graph coloring is a difficult approximation problem, but some special cases e.g. 2-coloring, (max degree +
1)-coloring can be solved in polynomial time. Looking closer at 2-coloring, we can give an algorithm in which
– given some graph G – we start at an arbitrary vertex v, assigning it Color A. Hence, all of v’s neighbors
are forced to be assigned Color B. For each of these 1st-level connections, we repeat the process, selecting
the opposite color (Color A), continuing until either the entire graph is colored or we run into a bad coloring
i.e. 2 vertices that share an edge have been assigned the same color. If there is any such bad coloring, the
graph is not 2-colorable because all of our coloring decisions were forced. Hence, we see that our algorithm
is linear in terms of the number of vertices in G.

Likewise, considering (max degree + 1)-coloring, we provide an algorithm in which we select arbitrary
vertices v repeatedly and assign unique colors to each of v

⋃
N(v) (N(v) represents the neighborhood of

vertices immediately adjacent to v). Because we always have a maximum of (max degree + 1) assignments
to make considering any v individually and exactly that many colors available, we will never encounter a
conflict in which we run out of unique colors and create a bad coloring.

Knowing that 2-coloring and (max degree + 1)-coloring can be done in polynomial time, we can come
up with an algorithm for coloring a 3-colorable graph G = (V,E) with O(

√
n) colors:

while v ∈ V s.t. deg(v) ≥ n:
pick 3 new colors: A, B, C
color v with A
// the below is possible because G is known to be 3-colorable
use the 2-coloring algorithm described above to color N(v) with B, C
remove the colored vertices from the graph

use the (max degree + 1)-coloring algorithm described above to color the rest of the vertices with
√
n colors

maximum

1

2.2 Proof of max-4
√
n colorability

Claim: The algorithm for O(
√
n) coloring as described above can color any 3-colorable graph G = (V,E)

with max 4
√
n colors.

Proof : According to the pseudocode above, whenever we find v s.t. deg(v) ≥
√
n, we pick 3 new col-

ors. Because we remove v
⋃
N(v) at the end of the iteration, the loop will run max n√

n
times. This means

using max 3n√
n

= 3
√
n colors throughout the while loop overall. We know that the final step, which uses the

(max degree + 1)-coloring algorithm, will use
√
n new colors total, so the number of unique colors used in

the algorithm is upper-bounded by 3
√
n+
√
n = 4

√
n colors total.

3 A semidefinite programming algorithm

We’d like to come up with an algorithm that will more strictly upper-bound the number of colors used to
appropriately color a 3-colorable graph. The below is a vector program with a vector vi corresponding to
every vertex i ∈ V :

minimize λ
subject to vi · vj ≤ λ,∀(i, j) ∈ E,

vi · vi = 1,∀i ∈ V ,
vi ∈ <n,∀i ∈ V (we consider vectors in the real space only)

3.1 Solving with λ ≤ −1
2

Claim: For an arbitrary 3-colorable graph, we can solve the vector program described above with λ = − 1
2 .

Proof : An example solution to this program is described by an equilateral triangle in which the unit
vectors vi corresponding to each vertex are matched with three different colors. The angle between vectors
of the same color is 0 (only one vector per color in this solution), and the angle between vectors of different
colors is 2π

3 (3 vectors splitting the central 2π angle). Hence, as we have already satisfied condition (2) and
(3) of the vector program, we show that (1) also holds:

vi · vj = ||vi||||vj ||cos(2π
3) = − 1

2

Because there exists a solution s.t. λ = − 1
2 , for the optimal solution (which may or may not be this one),

λ ≤ − 1
2 .

3.2 Solving with vi · vj = −1
2
, ∀(i, j) ∈ E

Claim: For an arbitrary 3-colorable graph, we can solve the vector program described above with vi · vj =
− 1

2 ,∀(i, j) ∈ E.

Proof : To prove the claim, we first define the term semicoloring.

Definition: A semicoloring is a vertex coloring of a graph G (n = |V |) where ≤ n
4 edges have vertex

endpoints with the same color (bad colorings), indicating the ≤ n
2 vertices are correctly colored (edge end-

points have different colors).

If we can come up with an algorithm that creates a k-semicoloring, we can color the whole graph with
k log n colors. Initially, we semicolor with k colors and only consider correctly-colored vertices, which should
be at minimum n

2 according to the definition above. Hence, the number of incorrectly-colored vertices is
upper-bounded at n

2 . We take k new colors and perform a k-semicoloring on the remaining vertices, which
will leave ≤ n

4 incorrectly-colored vertices, and so on. Following this pattern, there will be log n iterations
until G is correctly colored. If k new colors are selected each time, this upper-bounds the total number of
colors used at k log n.

2

Everything we just described is based on the assumption that a randomized algorithm for generating a
semicoloring exists. We solve the vector program described above, selecting t = 2 + log3 ∆ random vectors
r1, ..., rt, with ∆ = max deg(G). The t random vectors will create 2t different regions for the vectors vi: (1)
rj · vi ≥ 0, (2) rj · vi < 0, ∀j ∈ [1, t]. The vectors in each region are assigned different colors.

3.3 Probability of a 4∆log32 semicoloring

Claim: The coloring algorithm semicolors 4∆log3 2 colors with probability ≥ 0.5.

Proof : Our algorithm created 2t different regions and assigned each a different color. Because t = 2+log3 ∆,

2t = 22+log3 ∆ = 4∗2log3 ∆ = 4∆log2
3 colors. We must now show that the probability that this occurs is ≥ 0.5.

There are a few possibilities:

• For some edge (i, j), endpoints i, j are assigned different colors. Because these vertices have been
correctly colored, there is no need to consider them for re-coloring in the next iteration.

• For some edge (i, j), endpoints i, j are assigned the same color. This is equivalent to the probability
that i, j fall into the same region.

P (1 random hyperplane separates i, j) = 1
π arccos(vi · vj)

P (t independent hyperplanes separate i, j) = (1
π arccos(vi · vj))t

P (t independent hyperplanes do not separate i, j) = (1− 1
π arccos(vi · vj))t

P (i, j are assigned the same color) = (1 − 1
π arccos(vi · vj))t ≤ (1 − 1

π arccos(λ))t, following from the
vector program definition

(1− 1
π arccos(λ))t ≤ (1− 1

π arccos(− 1
2))t

(1− 1
π arccos(− 1

2))t = (1− 1
π ∗

2π
3)t = (1

3)t ≤ 1
9∆

Hence, P (i, j are assigned the same color) ≤ 1
9∆ .

If m = |E|, m ≤ n∆
2 (recall n = |V |, so if each vertex is of max degree, the number of edges will equal n∆

2).
From above, the number of edges with same-colored vertices ≤ m

9∆ ≤
n
18 . Create a random variable X =

number of edges with same-colored endpoints. By Markov’s inequality:

P (X ≥ n
4) ≤ E[X]

n/4 ≤
n/18
n/4 = 2

9 ≤
1
2

We know n upper-bounds max degree ∆, so this algorithm semicolors with O(nlog3 2) = Õ(nlog3 2) colors.
This isn’t as good as our starting algorithm (O(n1/2)) – log3 2 ≈ 0.631 ≥ 0.5, but we can improve using
some of the ideas we’ve already explored.

Assume some parameter σ. Our new algorithm is the following:

while v ∈ V s.t. deg(v) ≥ σ:
pick 3 new colors: A, B, C
color v with A
// the below is possible because G is known to be 3-colorable
use the 2-coloring algorithm to color N(v) with B, C
remove the colored vertices from the graph

use the semicoloring algorithm described above to color the rest of the vertices with O(σlog3 2) colors maxi-
mum

3

3.4 Probability of a O(n0.387) semicoloring

Claim: The algorithm we just described semicolors with ≥ 0.5 probability any arbitrary 3-colorable graph
with O(n0.387) colors.

Proof : Our loop removes ≥ σ vertices in every iteration, so we use max 3n
σ colors overall (n total iter-

ations, 3 new colors used in each one). If we set σ s.t. n
σ = σlog3 2 or σ = nlog6 3 ≈ n0.613, we can balance

the number of colors used in both parts of the algorithm. Dividing our exponent by 2, we then have the
algorithm overall using O(n0.387) colors.

4

