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Algorithmic Game Theory

Outline In this lecture we will review Myerson’s lemma ?, then discuss surplus maximization,
knapsack auctions, then talk about the revelation principle.
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1 Notation

• bidders 1 through n

• vi valuation of bidder i

• b bid vector

• x(b) allocation rule

• p(b) payment rule

• ui(b) = vi · xi(b)− pi(b) quasilinear utility

• DSIC: dominant-strategy incentive-compatible

there’s prob some more stuff, add as needed

2 Myerson’s Lemma

Some definitions first:

• Implementable: for a single-parameter environment, an allocation rule x is implementable
if there exists a payment rule p s.t. the sealed-bid auction (x,p) is DSIC. In other words,
there’s a payment scheme that rewards honesty.

• Monotone: for all bidders i and other bids b−i, the allocation xi(z,b−i) to i is nondecreasing
as a function of the bid z. In other words, bidding more means you get more.

• Single-parameter environment: has n bidders, where bidder i has private valuation vi and
feasible set X = {(x1, . . . , xn)} of the results of the payment rule – xi is the amount that
bidder i receives.

2.1 Statement

For a single-parameter environment:

(a) An allocation rule x is implementable if and only if it is monotone.

(b) If x is monotone, the unique payment rule p s.t. the sealed-bid auction (x,p) is DSIC is

pi(bi,b−i) =

∫ bi

0
z
d

dz
xi(z,b−i)dz

2.2 Proof

(a) Payment sandwich. Proved by David, but the essence is

z[x(y)− x(z)] ≤ p(y)− p(z) ≤ y[x(y)− s(z)]

(b) For piecewise constant, monotone x, the only important bits are the jumps. Because x is
monotonic, we want a p that only jumps at places z where x also jumps. So if we look at
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1 bidder i, fix everyone else’s bids b−i and look at their allocation x as a function of their
valuation, we get

pi(bi,b−i) =
∑̀
j=1

zj · jump in xi(·,b−i) at z

piecewise constant can approximate any continuous function, so this ends up being

p′(z) = zx′(z)

pi(bi,b−i) =

∫ bi

0
z · d

dz
xi(z.b−i)dz

3 Surplus Maximization for Knapsack Auctions

Remember that the Vickrey auction was “gold” – it satisfied 3 criteria:

• DSIC

• social surplus-maximizing

• polynomial runtime

Consider another auction setup, called a knapsack auction:

• n bidders, each with private valuation vi and publicly known “weight” wi

• seller has a capacity W , which bidders must not exceed (
∑n

i=1wixi ≤W , xi ∈ {0, 1})

so named because it’s modeled after the famous knapsack problem – if we have limited space in our
knapsack (n items with weights wi, weight W total) to choose from many valuable things (n items
with values vi), the problem asks which things we should pick to maximize value (max

∑n
i=1 vi

where
∑n

i=1 ≤W ). Can we make a knapsack auction also “gold”?

No, because the knapsack problem is NP-hard. Thus we can’t simultaneously satisfy both of the 2
last “gold” criteria. But if we allow the runtime to balloon up, can we at least satisfy DSIC-ness?

...Well actually in real life we’d like runtime to be polynomial. So something more reasonable to
do is make our surplus ‘loss’ as small as possible, but make sure the algorithm is polynomial time.
This is a good deal since it lets us use the more well-studied field of approximation algorithms.

If we know the exact surplus-maximizing x, then by Myerson’s lemma, the scheme is also DSIC.
But if we relax this to a x that makes the scheme polynomial-time and approximates the maximum
surplus, we can actually still make some pretty good guarantees! In particular if we choose a
greedy allocation, we get at least 50% of the theoretical maximum surplus, and amazingly we can
get pretty close to this scheme being DSIC.

3.1 The Revelation Principle

DSIC is secretly made of 2 related-but-disparate assumptions:

• Everyone has a dominant strategy regardless of vi.

• The dominant strategy is to reveal all private information to the mechanism (the auctioneer)
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But actually it’s possible to have schemes where the dominant strategy doesn’t require revealing
private information. Consider a malevolent auctioneer who, after seeing everyone’s bids b, runs an
auction on the bids 2b instead. Then the dominant strategy is for everyone to bid half their value.

Notice, however, that the bidders’ new bid was related to their original secret by a factor of 2 –
the revelation principle makes this more clear, saying that the second requirement follows from the
first.

3.1.1 Statement

For every mechanism M where each participant has a dominant strategy, there is an equivalent
DSIC mechanism M ′ where the dominant strategy is to reveal all private info to M ′.

3.1.2 Proof

Have M ′ act as a sort of ‘middleman’, accepting sealed bids b from the players, submitting them to
M , and choosing the same outcome that M does. Then M ′ is DSIC, since if anyone submits a bid
other than their private information vi, M

′ will then submit that other bid. Remember that in M ,
each participant is using their dominant strategy, which means that M would give a suboptimal
(lower or equal utility) outcome.
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