
Algorithmic Game Theory Fall 2019

Lecture 2: Introduction to Auctions

Scribes: James Hulett 9/24/19

2.1 Single-Item Model

We will start our discussion about auctions with the single-item model, where there are n bidders competing
for a single item. We will model an auction in this scenario as the following three-step procedure (known as a
sealed-bid auction):

(1) Each bidder i secretly submits their bid bi to the auctioneer.

(2) The auctioneer decides who gets the item.

(3) The auctioneer decides what the winner pays for the item.

Playing the role of the auctioneer, we would like to design steps (2) and (3) such that the bidders are
encouraged to give bids in step (1) that are in some way reasonable. To make this formal, we make the
following assumption about our bidders’ behavior:

Assumption 2.1. Each bidder i assigns some value vi to the item, which is kept a secret from the other
bidders. Each bidder then attempts to maximize their own utility, which we assume to be vi − p if they pay
p for the item and 0 if they don’t get the item.1

Using this as our model of bidder behavior, our goal is now to design our auction system such that each
bidder is incentivized to tell us their actual valuation of the item; that is, we want to have bi = vi for all i.
In an intuitive sense, this is a good goal to have as it gives us as the auctioneer the most information with
which to make the decisions in steps (2) and (3).

In addition to this assumption about how bidders act, we will also assume that step (2) is implemented in an
(intuitively reasonable) way:

Assumption 2.2. The highest bidder always wins the item.

In later weeks, we’ll see cases where using different rules to decide who wins can be helpful, but for now we
will only focus on figuring out how much to charge the winner once they have been determined.

2.1.1 An “Awesome” Design: The Vickrey Auction

Last week, we discussed one “good” way of implementing the payment step: the second-price auction (also
known as the Vickrey auction). In this auction, the highest bidder wins, but instead of paying their own bid,
they pay whatever the next highest bid was. As we briefly discussed last week, this auction system is good
for a number of reasons, outlined in the following theorem.

1This is known as a quasilinear utility model.

1



Lecture 2: Introduction to Auctions 2

Theorem 2.3 (Vickrey ’61). The Vickrey auction is “awesome”, meaning that

(1) Having bidder i bid vi is a dominant strategy (this strategy maximizes bidder i’s utility regardless of what
other bidders do).

(2) Any bidder following this strategy is guaranteed a non-negative utility.

(3) If all bidders follow their dominant strategy, the auction maximizes the social surplus
∑

i viai, subject to
the constraint that exactly one ai is 1 and the rest must be 0.

(4) The auction can be implemented efficiently.

An auction that has the first two properties is often called dominant-strategy incentive-compatible (DSIC).
These properties tell us, in effect, that the auction is easy for the bidders to play, and that there’s really no
reason for them to not join in. This is good for us as the auctioneer, as if more people join our auction, we’re
more likely to have bidders who value our item highly, and so we can potentially sell it for more.

2.2 Multiple-Item Model

While the single-item model is (relatively) easy to work with and analyze, it isn’t always a particularly
good model for what we want to do in the real world. As a motivating example, we consider auctioning off
sponsored links in a Google search. If we have multiple slots in a page of results, it doesn’t really make sense
to auction them all off independently of one another, as an advertiser (probably) wouldn’t want two slots.
Thus, we wish to design a model where we can auction off k items at once, and each bidder gets at most one
item.

In order to work with this model, we will again need to make some assumptions about our bidders’ strategies.
Importantly, we will not assume that the bidders value all items equally, but instead will assume the following:

Assumption 2.4. Each bidder i has some base valuation vi, and each item j has a “quality” score qj . If
bidder i pays p for item j, their utility is qjvi − p; if they get no item, their utility is 0.

Note that this assumes that there is some objective ordering to the items — it cannot be the case that one
bidder wants item 1 the best but some other bidder would prefer to have item 2.2 In our motivating example
of sponsored links, we can think of vi as the value bidder i gets out of a click and qj as the percentage of the
time users click on link j. In this interpretation, qjvi is bidder i’s expected value if they get assigned slot j.

Our goal is now to design an “awesome” auction system for the multiple-item model. The definition of
“awesome” is almost exactly the same as in Theorem 2.3; the only difference is in point (3), where we have to
change the formula for social surplus. In order to ensure that the surplus corresponds to the total value the
bidders get from their items, we change the constraints on the ais to say that each qj gets filled in for exactly
one of them, while the remainder are all filled with zeros.

2For simplicity, we will number the items such that q1 ≥ q2 ≥ ... ≥ qk.



Lecture 2: Introduction to Auctions 3

2.2.1 A General Strategy

As we discussed earlier, an auction system is effectively defined by two rules: an allocation rule that decides
which items go to which bidders, and a payment rule that decides how much each bidder pays.3 In order to
design our awesome auction system, we will apply the following two step procedure:

Step 1) Assume that bi = vi for all i. Design an efficient allocation rule that maximizes the social surplus.

Step 2) Design a payment rule that is DSIC given our allocation rule.

For our purposes, step 1 is easy enough to do: we simply assign the highest bidder to slot 1, the second
highest to slot 2, and so on. This is very efficient (the slowest part is the sorting of the bids), and it is a
fairly easy exercise to show that this allocation will indeed maximize the social surplus. We will spend the
remainder of today focusing on step 2.

2.2.2 Myerson’s Lemma

A natural question one might ask is if step 2 in our above strategy is always possible. Given any allocation
rule, can we design a payment rule that will give us the DSIC property? It turns out, the answer is no.
However, we are able to quantify exactly when our allocation rule admits a DSIC payment rule — and as an
added bonus, we can give an explicit formula for that payment rule when it exists. To get to this, we first
give the following definition.

Definition 2.5. An allocation rule is monotone if, given any fixed bids from all bidders other than i, ai(b)
is non-decreasing in bidder i’s bid.

Monotonicity is intuitively a reasonable property we would want from our allocation rule. After all, if a
bidder could potentially get a more valuable item by bidding less, they might be incentivized to bid less than
their true valuation, which is precisely what we are trying to avoid. In fact, it turns out that monotonicity is
exactly the property we need from our allocation rule in order to get a DSIC payment rule, as stated in the
following theorem.

Theorem 2.6 (Myerson ’81). Consider an allocation rule a. Then

(a) a admits a DSIC payment rule if and only if a is monotone.

(b) If a is monotone (and assuming that pi(b) = 0 whenever bi = 0), there is a unique DSIC payment rule.

(c) We can give an explicit formula for this unique payment rule.

Myerson’s Lemma in fact applies to a wide variety of auction models and possible allocation functions.
However, for today we will consider it in the context of our multiple-item auction model. What this will
mean for us in particular is that we will only consider allocation functions which are piecewise constant in bi.
This means that, outside of a finite number of jumps, ai(b) remains constant as a function of bi.

4

Proof of Myerson’s Lemma. Fix any bids by all bidders other than i, and let y and z be two numbers such
that 0 ≤ y < z. We first consider what would happen if bidder i had true valuation z. In this case, bidder i

3For notational simplicity, we will often write ai(b) to denote the value of whatever item (if any) is allocated to bidder i
given a vector of bids b, and pi(b) to denote the price bidder i pays.

4For notational simplicity, whenever we have some fixed bids from other bidders, we will let ai(bi) be the univariate function
obtained by fixing all bids other than i in ai(b); we define pi(bi) similarly for payments.



Lecture 2: Introduction to Auctions 4

would achieve utility z · ai(z) − pi(z) by bidding z, or a utility of z · ai(y) + pi(y) by bidding y. If we want to
have the DSIC property, we need to have that the bidder cannot do better by lying about their valuation,
meaning we need

z · ai(z) − pi(z) ≥ z · ai(y) − pi(y) (2.1)

We can now repeat exactly the same argument in the case where y is bidder i’s true valuation. This will tell
us that in order to have any hope of being DSIC, we also need

y · ai(z) − pi(z) ≤ y · ai(y) − pi(y) (2.2)

We can then take these two inequalities and put all the ps on one side, giving us

z(ai(z) − ai(y)) ≥ pi(z) − pi(y) (2.3)

and
y(ai(z) − ai(y)) ≤ pi(z) − pi(y) (2.4)

Note that in particular, this must mean that

z(ai(z) − ai(y)) ≥ y(ai(z) − ai(y)) (2.5)

Since z > y, this is only possible if ai(z) − ai(y) ≥ 0. Hence, we know that if we want to have any hope
of making a DSIC payment rule, we need to have that ai(z) ≥ ai(y) whenever z > y; that is, we need our
allocation rule to be monotone.

In order to complete the proof, we now just need to show that if a is monotone, there exists a unique DSIC
payment rule (and give a formula for it). This is where we will use the fact that we are only considering
piecewise constant functions. Note that by (2.3), if bids y and z get the same allocation, we must have that
pi(z) − pi(y) ≥ 0. Similarly, by (2.4), we must have that pi(z) − pi(y) ≤ 0. Thus, if we are to have any hope
of being DSIC, we must ensure that whenever ai(z) = ai(y), pi(z) = pi(y) as well. Since ai is piecewise
constant, we know that pi must also be piecewise constant, with jumps only where there are jumps in ai.

Now we consider what happens at the points where ai jumps. We will assume that we have some point y such
that the jump is just above y.5 We fix y and consider what happens to (2.3) and (2.4) as we let z approach y
from above. In this limit, the multiplicative factor of z in (2.3) will approach y, so the two equations will
tell us that pi(z) − pi(y) must be both upper and lower bounded by y(ai(z) − ai(y)), and hence must in fact
equal this quantity. Putting this together with our assumption that a bid of zero results in a payment of zero,
we get that the only possible DSIC payment rule for an allocation rule a is given by

pi(b) =
∑
j∈Jb

j · jump in ai(·) at j (2.6)

where Jb is the set of all points no larger than b at which ai(·) jumps.

Note that so far, we have only showed that no rule other than that given in (2.6) can possibly give us a DSIC
auction, but in order to complete the proof, we need to show that this payment rule is actually DSIC. First,
we consider what happens if bidder i bids above their valuation. For each jump point j in ai they cross,
the value of the item they get goes up by vi times the magnitude of the jump. But at the same time, the
amount they pay goes up by j times that same magnitude — so since j must be larger than vi (as we are
only considering jumps they reach moving upwards from vi), the extra payment is larger than the extra value,
so bidder i can only lose utility. Similarly, if bidder i underbids, each jump they cross below vi decreases the
amount they pay by j times the jump but also decreases the value they get by vi times the jump, so since
j < vi, they lose utility. For a more visual way of understanding this, we have the following figure:

5The case where the jump is just below a point is almost symmetric; instead of fixing y and letting z approach y from above,
we fix z and let y approach z from below.



Lecture 2: Introduction to Auctions 5

Note that this figure is drawn from Tim Roughgarden’s notes, and so uses slightly different notation from
what we’ve been using here.

2.2.3 Myerson’s For Multiple-Item Auctions

Now that we have a good understanding of how to create a DSIC payment rule (and when it is possible),
we will see how to apply this to our multiple-item auction model. Suppose that our k items have quality
scores q1 ≥ q2 ≥ ... ≥ qk and fix bids b1 ≥ b2 ≥ ... ≥ bn for all the bidders.6 All the bidders below k get an
allocation of zero (the same as if they had bid nothing at all), and so must pay zero. Bidder k is above a
single jump in the allocation function, from 0 to qk. This jump occurs where they would first beat bidder
k + 1 — that is, at bk+1. Hence, bidder k should pay bk+1qk. Bidder k − 1 is then above this jump as well as
the jump from qk to qk−1. Since this latter jump occurs at qk, bidder k− 1 should pay bk+1qk + bk(qk−1 − qk).
Continuing this pattern, we get that for i ≤ k, bidder i will pay

k∑
j=i

bj+1(qj − qj+1) (2.7)

where we define qk+1 to be zero; all other bidders will pay nothing, as they get allocated nothing.

6We may need to rename the bidders to get this order of bids.


	Single-Item Model
	An ``Awesome'' Design: The Vickrey Auction

	Multiple-Item Model
	A General Strategy
	Myerson's Lemma
	Myerson's For Multiple-Item Auctions


