Algorithmic Game Theory Fall 2019

Lecture 4: Prophet Inequality

Scribes: Jonathan Liu 10/8/2019

4.1 Relevant Ideas from Previous Weeks

4.1.1 DSIC Auction

A Dominant Strategy Incentive Compatible auction is one in which every player has a dominant
strategy which is to act according to solely their own preferences, and where this dominant strategy always
results in nonnegative utility. It’s a generally preferable auction to strive for because it means that strategies
are really easy to players to determine and nobody leaves the auction unhappy.

4.1.2 Vickrey Auction

The Vickrey Auction, also knows as the second-price auction, is a single-item auction in which the
top bidder receives the item and pays the second highest bid. The dominant strategy for each player is to
simply bid their valuation of the item. Its claim to fame comes in being easy to implement, DSIC, and
welfare-maximizing.

4.1.3 Revenue and Virtual Welfare

Last week, we learned about the difficulties in maximizing revenue, despite its obvious real-world applicability.
In the setting where bidder ¢’s valuation of an item is private but drawn from a distribution with CDF F;
and PDF f;, we described the bidder’s virtual welfare as a function of their private valuation:
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While of course we can’t know any bidder’s virtual welfare because we don’t know their valuation, we did
find the surprising fact that for any auction, the payment rule that maximizes expected revenue
is exactly the payment rule that maximizes virtual welfare. Of course, we’d like virtual welfare,
whatever it is, to be monotone increasing as v; increases in order to match our standard definitions of welfare
and value. If F; is a function that allows for this monotonicity, it is called regular.
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4.2 What more is there?

At first glance, this should be a pretty satisfying answer to all of our problems. For any single-parameter
auction with reasonably predictable valuation distributions F;, we can just find the payment rule that
best maximizes expected virtual welfare, and then we’re done! If each distribution is regular (read: fairly
well-behaved), this optimal auction can be made to be DSIC, which is great as well.

Unfortunately, life is never that easy. To see why, let’s work on an exercise!

4.2.1 A Quick Exercise [Exercise Set 3, Exercise 26|

Consider a single-item auction where bidder #’s valuation is drawn from its own regular distribution F; (i.e.,
the F;’s can be different).

(a) Give a formula for the winner’s payment in an optimal auction, in terms of the bidders’ virtual valuation
functions.

(b) Show by example that, in an optimal auction, the highest bidder need not win, even if it has a positive
virtual valuation. [Hint: two bidders with valuations from different uniform distributions suffices.]

(¢) Give an intuitive explanation of why the property in (b) might be beneficial to the revenue of an auction.

Unfortunately, as seen, optimal auctions can result in some pretty counterintuitive design, which may be
theoretically revenue-maximizing but still awkward to implement. For this reason, we’ll spend the rest of the
lecture thinking about more practical alternatives that are also more robust to varied valuation distributions.

4.3 Prophet Inequality

Before we can introduce our next revenue-almost-maximizing auction, we’ll take a detour into the intersection
between Stopping Theory and auctions. Let’s say we’re trying to auction off our single item, and we have a
list of n bidders. Instead of hearing all of the bids as in a classical auction, we hear each bid one at a time,
and after hearing a bid we can choose to either accept that bid as payment or reject the offer and move on to
the next bidder. We’ve done our research; while we don’t know each bidder’s bid 7; a priori, we do have a
distribution for each bidder’s potential bid, denotes as F; for bidder i. Obviously, (unless of course we’re
prophets) no strategy can guarantee that we’ll always accept the best bidder regardless of distributions, but
there actually does exist a strategy that performs better than perhaps expected. This is outlined by the
Prophet Inequality, introduced by Samuel-Cahn:

Theorem 4.1 (Prophet Inequality). For the auction described earlier on independent distributions F, ..., Fy,
there is a strategy that guarantees

1
E[reward] > §E[max i)

In fact, there is a “threshold” strategy that guarantees this.
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As a sanity check, it may be useful to think about this in comparison to the famous Secretary problem, where
the setup is the same but we have no a priori distributions on any applicants. Even so, in that case there
exists a strategy that accepts the best candidate with probability 1/e. Given the amount of information
we have in our setting, we’d hope to at least do comparably well, and the Prophet Inequality in fact does
somewhat better than the 1/e guarantee.

Proof of Theorem[4.1 Let’s say that we're using a strategy with threshold ¢, which means that we simply
take any offer that is greater than or equal to t. To analyze the expected payoff from the auction, we’ll split
the result of the auction using our strategy into three cases: either no bid meets the threshold, more than one
meets the threshold, or exactly one meets the threshold. While the first two cases are certainly reasonable
cases to consider, the intuitive reason behind considering the middle case is that in this case, our strategy
always yields the optimal payout.

e Case 1: No bid meets the threshold. Denote by ¢(¢) the probability that this occurs. In the real world,
we’d just take the last bid regardless of what it is (why?), but in this case we’ll assume we take nothing.
Thus our expected value in this case is 0.

e Case 2: More than one bid is above the threshold. Frankly the analysis of this will take a lot of work
and our bound is relatively relaxed, so we’ll just assume in this case that we receive exactly t revenue
from the auction to save us the trouble of doing other calculation.

e Case 3: Exactly one bid is above the threshold. If we were to be precise, the expectation from this is

> Elm|m; > 1] - Prlm; > ] - Pr((Vj # ) m; <],
i=1

but we’d much prefer simplicity, especially in coordination with the previous case. Note that in either
Case 2 or Case 3, the minimum revenue is ¢, and these cases occur with probability 1 — ¢(t), so we’ll
instead look at the “excess” revenue generated in the case where exactly one bidder is above the
threshold. We note that the expected excess revenue in this case is

> Elm; — tlmw; > t] - Prlm; > ] - Pr[(V) # i) m; < t].

=1
Now, we know that Pr[(Vj # i) m; < t] < ¢(t) (why?), so
> Elm; —tlm; > 1] - Prlm; > ] - Pr((Vj # i) m; < ] > q(t) Y Elm — t|m > t] - Prlm; > 1].
=1 =1

Now, note that E[r; — t|m; > t] - Pr[m; > t] can be thought of as

E[m; — t|m; > t] - Pr[m; > t] = E[m; — t|m; > t] - Pr[m; > ¢] + 0 - Pr[m; <]
= E[max(m; — t,0)],

so our expected bonus revenue can be expressed as

q(t) Z E[max(m; — t,0)].
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Combining the analysis from these cases gives us

n

E[Revenue] > (1 — q(t)) -t + q(t) Y E[max(m; — t,0)].

=1

With this in mind, our challenge is to somehow rewrite the prophet’s outcome in terms of comparable items.
Note that the prophet’s expected outcome is exactly E[max; m;], which doesn’t include anything about ¢ at
all. Forcing it into the expression and using some manipulation towards our lower bound’s expression gives us

E[max ;] = E[t + max(m; — t)]
< E[t 4+ max(m; — t,0)]

=t + E[max(m; — t,0)]

<t+ iE[max(ﬂ'i —t,0)].

i=1

Thus, selecting ¢ such that ¢(t) = 0.5 and plugging this ¢(¢) into the lower bound immediately gives us the
result we need. O

One important note is that we actually deducted all of the benefit if multiple bidders are above the threshold.
This means that any choice of bidder above the threshold, even always selecting the worst one for whatever
reason, would still give us this guarantee!

4.4 Generalizing to a Single-Item Auction

In the context of a normal auction, we clearly aren’t constrained to accept bids one at a time; we can receive
them all at once! Even so, we do need to think about how we can maximize expected revenue. Remember
that maximizing expected revenue is equivalent to maximizing virtual welfare, so we should look for a way to
approximately find the maximal virtual welfare. For a single item, this tells us simply that in the optimal
auction, the expected revenue is exactly E[max; ¢;(v;)], or the maximal virtual welfare (of course, on the
condition that some bidder’s virtual welfare is greater than zero). Notice that choosing the maximal value
of something on expectation is something approximable using the Prophet Inequality! In particular, the
Prophet Inequality tells us that, with the correct threshold strategy for selecting a bidder, we can guarantee
always doing at least half as well as if we had been prophets all along.

In particular, in the proof of Prophet Inequality, we selected a threshold such that the probability that
someone met the threshold was exactly 1/2, which in this case means we must select some ¢ such that

1
Prmax ;(v;)] = =
i 2
With this ¢, we concluded previously that selecting any bidder with virtual welfare greater than this value is

automatically a good enough allocation mechanism, in particular that this allows us to do at least half as
well as the best possible auction had we known each player’s valuations.
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One special case, in particular, is if we simply allocate the item to the highest bidder with virtual welfare
at least t. Note that in this case we simply revert to the Vickrey Auction for payment, in the sense that
the person who receives the item pays the least amount needed to beat every other bidder (as well as reach
the t threshold). This auction is much simpler in terms of allocation, calculating payments, and general
bidding, but it does have a lingering issue: it requires us to be fairly confident in our assessment of the
bidder’s valuation function. After all, a skewed valuation function changes the virtual welfare of any bidder.

4.5 Prior-Independent Auctions

This, of course, is a whole new can of worms; what if we don’t know the bidder’s valuation functions
all too well? What if we don’t know them at all? We’d like to be able to design an auction close to
revenue-maximizing that doesn’t rely on us having a great idea of each person’s valuation. Along the same
lines, we should be wondering how much benefit we actually derive from knowing the bidders’ valuation
distributions. Auctions like these that don’t rely on prior information are called (for pretty clear reasons, I
think) prior-independent auctions, and are an extremely valuable topic of research.

)

Of course, we’ve spent a decent portion of this group describing how the Vickrey Auction is an “awesome’
auction in terms of welfare-maximization, efficiency, and DSIC, despite not requiring any knowledge of
the bidders’ valuations a priori, so the Vickrey auction should be considered a standard benchmark for
prior-independent auctions. What’s obvious, by definition, is that the optimal revenue-maximizing auction is
at least as good as the Vickrey Auction. What should be less obvious, and probably quite surprising, is the
following result:

Theorem 4.2 (Bulow-Klemperer Theorem). Let F' be a regular distribution, and take an auction with every
bidder following this distribution F'. Then

E[Revenue(Vickrey) (n + 1 bidders)] > E[Revenue(Optimal Auction) (n bidders)].

Huh. Let’s just dive into the proof, I guess. We begin with a lemma about the strength of Vickrey Auctions.

Lemma 4.3. In the space of single-item auctions where every bidder follows the same regular valuation
distribution and the item is guaranteed to be sold to someone, the Vickrey Auction is the member that
maximizes revenue.

Proof of Lemma4.3 Because each bidder follows the same valuation distribution, every bidder has the exact
same formula for virtual welfare as well. As long as virtual welfare is monotone, which we know because
F is given to be regular, the highest bidder will always have the highest virtual welfare, so it is always
revenue-maximizing to allocate the good to the highest bidder. The only price structure that maintains
DSIC is exactly the second-price auction. We note that the Vickrey Auction always sells the good even if the
virtual valuation is negative. If the space did not require the item to be sold, then the Vickrey Auction can
be suboptimal if every bidder’s virtual welfare is negative. O
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)

Proof of Theorem[].34 To prove this Theorem, we construct an “intermediary” auction comparable to both

sides of the inequality. Our auction is on n + 1 bidders, and works as follows:

1. Run the optimal (not necessarily Vickrey) auction on the first n bidders, ignoring the n + 1th bidder.

2. If the item was not sold, give it to bidder n + 1 for free.

First, we note that this auction is on n + 1 bidders, every bidder follows the same regular valuation, and
the item is guaranteed to be sold. Thus, by Lemma [£.3] the Vickrey Auction guarantees at least as much
expected revenue as this one. Next, note that the expected revenue of this auction is exactly equivalent to the
expected revenue of the optimal auction on n bidders, because the last bidder can never contribute positively
or negatively to the revenue. Thus, this bidder is never better than Vickrey on n 4+ 1 but always equal to the
optimal auction on n bidders, so the Theorem follows. O

To some extent, the fact that this Theorem holds is bittersweet. On one hand, it tells us that auction designers

stand to gain more by simply increasing the number of participants than by trying to find the optimal auction

on the bidders. This is great news for auctioneers who do not want to spend the time learning the preferences

of their bidders. on the other hand, it to some extent discourages mechanism design; why bother perfecting

auctions and learning preferences if the benefit is comparatively negligible? It’s also clear through this and

some simple analysis of the Vickrey Auction on different numbers of bidders that the expected revenue of
n

the Vickrey Auction is at least 7 times the expected revenue of the best possible auction on the bidders.

That’s a pretty sharp ratio, all things considered.

4.6 Virtual Valuations Practice

If there’s time at the end, it might be good for us to work on a problem interpreting virtual valuations. Take

a look at Problem 7 in [Problem Set 21
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