
Algorithmic Game Theory Fall 2019

Lecture 3: Knapsack Auctions and Welfare Maximization

Scribes: Debayan Bandyopadhyay 10/2/2019

3.1 A Quick Review

Recall that we wanted the following characteristics for any auction, which we called an Awesome auction.

1. DISC (defined below)

2. Maximizing the social welfare,
∑

i viai, assuming truthtelling bidders

3. Computationally efficient procedure

We also defined DSIC (Dominant Strategy Incentive Compatible) to mean the following:

1. Every bidder has a dominant strategy

2. Every truthtelling bidder has nonzero utility

The first is important for us to reason about the auction. The second allows bidders to participate without
concern that the rules will adversely affect them.

We also discussed Myerson’s Lemma, which is used in single parameter environments, that is, envi-
ronments where there is only one relevant parameter, the valuation of a particular item. Myerson’s Lemma
concerns n bidders with private valuations vi, with some feasible allocation set A, from which allocation
vectors (a1, a2, . . . , an) are chosen. For example, in a single item auction, the feasible satisfies

∑
i ai ≤ 1,

whereas in a k item auction,
∑

i ai ≤ k. There are three conclusions we made:

1. ~a is implementable if and only if the allocation rule is monotone

2. There is a unique payment rule that is DSIC.

3. pi(~b) =
∑

j zj ·jump in ai(~b). The generalization for this in the continuous case is pi(~b) =
∫ bi
0
z ·a′i(z,~b)dz.

1



Lecture 3: Knapsack Auctions and Welfare Maximization 2

3.2 Knapsack Auctions

3.2.1 The Knapsack Auction

Knapsack auctions are single parameter environments that are slightly different from k item auctions. We
have two additional concerns with this new type of auction.

First, every bidder has some size, wi. Second, we have a capacity W , which means
∑

i wiai ≤ W . The
analogy here is Super Bowl commercials. Every commercial has some length, and we need to take those
lengths into account given that we can’t play all of them in the time that we have. We can actually re-
construct a k item auction in this type of auction by setting wi = 1 for each bidder and W = k for the capacity.

Let’s try to design an awesome knapsack auction! Roughgarden provides a two-step dance to address-
ing this issue. First, we want to assume that every bidder will truthfully provide their valuation, that is,
bi = vi and then look to maximize welfare. Second, we then devise payment rules to be DSIC.

How do we maximize welfare? Well, noting that welfare is
∑

i viai and then using our assumption that

bi = vi, we want to find the allocation rule that satisfies ~a(~b) = arg maxA

∑
i biai. This is an instance of the

Knapsack problem from CS170! (You’re a grave robber trying to make as much money for yourself as you
can, but you can only take the jewels that fit in your knapsack. How do you choose the jewels based on their
weight/size and value such that you maximize the value of your theft?)

How about payment?

Note that our rule is monotone. If a particular person values the item more, they bid more, and as a
result, are MORE likely to be given nonzero allocation. Monotonicity implies that the allocation jumps
from 0 to 1 at some value for the valuation, z. Myerson’s Lemma says that our payment rule will be
pi(~b) =

∑
j zj · jump in ai(~b), so factoring in the one jump, we get for bidder i is zero up to the valuation

point z after which it is z.

The issue with this is that the problem is in general intractable. Knapsack doesn’t run in polynomial
time, and as Jonathan pointed out during the lecture, we have to run Knapsack several times for us to run
our auction.

Let’s revisit our requirements, of which we had three. First, we wanted the auction to be DSIC. Sec-
ond, we wanted to maximize welfare. Third, we wanted to be poly-time efficient. The two rules that are odds
with each other here are the maximization of welfare, and the polynomial runtime used to design the auction.
Thus, we shouldn’t relax the first constraint.

There are cases in which it makes sense to relax the third constraint, for small or structured enough
instances. However, algorithmic mechanism design hopes to relax the maximizing welfare condition and
achieve the other two requirements for an awesome auction.

In essence, we want to design algorithms which are polynomial time with monotone allocation rules, which
come close to maximizing welfare.



Lecture 3: Knapsack Auctions and Welfare Maximization 3

3.2.2 Knapsack, A Second Pass

We’re going to consider the following rule:

1. First, sort and reindex the bidders such that we maximize the ratio of their valuation to their weight. In
other words, we want to order and reindex such that v1

w1
≥ v2

w2
≥ . . . vn

wn
. Given that we have truthtelling

bidders, we just use their bids directly to reorder and index such that b1
w1
≥ b2

w2
≥ . . . bn

wn
.

2. Pick bidders to allocate in order until we can no longer accommodate another bidder.

3. Pick either the result of step (2) or the highest bidder, whichever has a larger total welfare value.

This allocation rule actually provides a half-approximation to the optimal allocation. That is to say, we get
at least 50% of the total welfare obtained by using this rule as we do by optimally finding the best allocation.

Sketch: We consider what happens when we allow fractional allocation, wherein we are allowed to allocate
some fraction of a full allocation, in exchange for the bidder only contributing that same fraction of their
weight to the overall weight. For example, imagine that we allowed commercials to play for only 75% of their
total length. Clearly, fractional allocation will always be more optimal than the nonfractional kind, because
we can pick and choose fractions to match our capacity exactly. Suppose we ranked bidders in the same way
that we did in our scheme, and in doing so, we took the first k bidders, as well as some fraction of the k+ 1st
bidder. By an exchange argument (taught in 170!), this greedy scheme is actually optimal for fractional
knapsack.

How does our greedy scheme for the nonfractional case do in comparison?

Well, in the first two steps that we take, we take all k of the bidders that the fractional problem can
take. In the third step, we choose between those k bidders and the highest bidder, and the highest bidder has
valuation at least as much as the k+ 1st bidder, of whom the fractional problem takes some fraction, because
the highest bidder has valuation higher than all bidders. The fractional case achieves welfare composed of
the total valuation of the first k bidders and the fraction of the k + 1st bidder that we can accept. With our
greedy nonfractional algorithm, we get at least as much as the first k bidders, and at least as much as the
k + 1st bidder (but not both). This means that our greedy algorithm for the nonfractional case achieves a
total welfare equivalent to at least half of the welfare of the fractional case. But the fractional case is always
going to do at least as well as the case in which we aren’t allowed fractional allocations, so our greedy scheme
does at least half as well as optimal for nonfractional knapsack problems. In fact, it can be shown that if
every bid is only some α fraction of the total capacity, i.e. wi ≤ αW , with α ∈ (0, 12 ], then, we can achieve a
value of total welfare which is 1− α as much as the optimal with our greedy scheme.

One thing to note is that our allocation scheme is still monotone! If you have a higher valuation, then you
bid higher, and if you bid higher, then your order in the list can only go up. This gives you a better chance
of being given a spot. Sometimes in polynomial time mechanism design schemes, we don’t get monotonicity,
but usually we can restructure our problem to get it back.



Lecture 3: Knapsack Auctions and Welfare Maximization 4

3.2.3 The Big Question

Is there a single parameter environment for which an approximate polynomial time algorithm beats out an
approximation by a polynomial time AND monotone algorithm? Hopefully, we’d want the answer to be no so
that all of our mechanism designs can be monotone, but we don’t know the answer.

We can also ask if we can accomplish more in nonDSIC mechanisms than in mechanisms that are restricted
to be DSIC. For that, we should look back at the assumptions of DSIC mechanisms.

1. Every participant has a dominant strategy.

2. Direct revelation: Truthfully reporting is the dominant strategy.

Can we satisfy the first assumption without satisfying the second? Yes. Suppose we ran a Vickrey auction
where we first multiplied all the bids by 2. The winning bid would have to pay twice what they would have
had to in a regular Vickrey auction, all bids held constant, so the dominant strategy of every bidder should
just be to bid half of their valuation, such that we recover our Vickrey auction.

With this in mind, we can also ask if it’s possible to take a scheme which has dominant strategies for
every bidder and convert it into a scheme in which each bidder has a dominant strategy, but that dominant
strategy is actually to tell the truth. The answer is yes. This is what we call the Revelation Principle:
For every mechanism M for which every bidder has a dominant strategy, we can construct a mechanism M ′

for which the dominant strategy is for each bidder to bid their valuation.

The proof is a reduction (170 wooo!). Suppose b(M,i) = si(vi) is the dominant strategy bid for any
given bidder. Then, we can construct a scheme M ′ where we take every bidder’s bid, run si on it, and then
run M on the resulting bids. In other words, b(M ′,i) = vi, but we run M on si(b(M ′,i)).

What this tells us is that truthfulness is not as important as there being an equilibrium of some sort.
When we design mechanisms, we might as well design it to also have direct revelation baked in.

3.3 Welfare vs. Revenue Maximization

3.3.1 So, Why Welfare?

So far, we’ve looked at maximizing this quantity
∑

i viai, which basically says that we want to maximize the
value provided to the bidders with the items that we auction off. Why do we consider this?

Here are two reasons why it intuitively makes sense for us to be doing this. First, we see that in many
contexts it makes sense for us to maximize welfare. For example, the government doesn’t care so much about
revenue as it does with providing maximum welfare for its citizens (in theory, anyway). Second, assume you
were a seller who didn’t look to maximize welfare. Your unsatisfied customers would get swooped up by
someone who was doing a better job of maximizing welfare in their mechanism design.

In addition, revenue often depends on inputs of the problem, but welfare does not. For example, let’s



Lecture 3: Knapsack Auctions and Welfare Maximization 5

say you worked with a one item, one bidder auction. In essence, this auction is take it or leave it. Let’s say
we were to set the price of the item to be r. What revenue would we get? Well, we would get revenue r if
v ≥ r and 0 if v < r.

What would we do if we wanted to maximize welfare? What would we do if we wanted to maximize
revenue? To maximize welfare, we might just set the price r to be 0. Then the value added to the bidder
would always be v. To maximize revenue, we might do r = v, but we don’t know what the valuation is before
we hold the auction! In addition, this changes for different auction types and different input types (more or
less bidders). Maximizing revenue is hard to reason about in a way that welfare is not, and that’s why we
choose to maximize revenue.

3.3.2 Average Case/Bayesian Analysis

Suppose we are still working in the single parameter environment that we’ve been working with, but now we
want to try to maximize expected revenue. For that, we’re gonna assume we have some information about
the types of valuations that people are going to have. Otherwise, the problem is just hopeless.

With that in mind, let’s suppose every person has some valuation vi which is actually drawn from a
CDF Fi with corresponding PDF fi. Suppose this probability distribution only has support over the region
from [0, vmax]. This is not unreasonable. People generally get nonnegative value from receiving items from
auctions up to some reasonable limit, and each individual bidder will probably value certain types of items
more than others. The only additional assumption we make here is that all these distributions Fi are
independent from each other. This may be harder to satisfy because the bidders’ opinions may sway each
other. To approach this problem of maximizing our expected revenue, we say that we don’t know the vi
before the bids are presented to us, but we do know the Fis.

What is our expected revenue? If we go back to our one item, one bidder auction and set our price
to be r, then it’ll be:

r · (1− F (r))

where the first term is the revenue of the sale, and the second term is the probability of the bidder. The r
that maximizes this expected value is called the monopoly price of F . For example, if F is distributed as
U(0, 1), then r should be 1

2 . If instead we have two bidders and hold a Vickrey auction, the monopoly price
we should set is r = 1

3 . (This, by the way, can be done as a brief exercise to test your understanding of the
Vickey design and the monopoly price idea.)

A sidenote is that we could also use a reserve price, wherein we give it to the highest bidder, unless no one
bids at or above the reserve price.

So let’s get crackin’ on this expected revenue. First, let’s use the revelation principle to say that we
might as well assume that the bidders are going to give us their truthful valuations. With that in mind, we
want to calculate the total payment that all of our bidders make given the valuations they make. In other
words, we want to find an expression for E~v[

∑
i pi(~v)] such that it helps us maximize it.

Recall from Myerson’s Lemma, pi(~b) =
∫ bi
0
z · a′i(z,~b)dz if we have our payments dictated by the allo-



Lecture 3: Knapsack Auctions and Welfare Maximization 6

cation rule. Let’s fix the bidder, i and all other valuations, ~v−i, where this notation means the vector
containing the valuations for all bidders except i.

Evi [pi(~v)] =

∫ vmax

0

pi(~v)fi(vi)dvi (3.1)

=

∫ vmax

0

∫ vi

0

z · a′i(z,~v)dzfi(vi)dvi (3.2)

=

∫ vmax

0

(∫ vmax

0

fi(vi)dvi

)
z · a′i(z,~v)dz (3.3)

=

∫ vmax

0

(
1− Fi(z)

)
z · a′i(z,~v)dz (3.4)

=
((

1− Fi(z)
)
z · ai(z,~v)

)∣∣∣vmax

0
−
∫ vmax

0

ai(z,~v) ·
(
1− Fi(z)− zfi(z)

)
dz (3.5)

=

∫ vmax

0

(
z − 1− Fi(z)

fi(z)

)
ai(z,~v)fi(z)dz (3.6)

=

∫ vmax

0

φi(z)ai(z,~v)fi(z)dz (3.7)

Note that we used change of bounds from (3.2) to (3.3), and then used integration by parts from (3.4) to
(3.5). (Do it as an exercise if that pleases you.)

We defined φi(vi) = vi − 1−Fi(vi)
fi(vi)

. The first term is the valuation, what we want to charge them at,

and the second term is something we can think of as the price we have to pay for not knowing exactly what
the valuation is. Compare and contrast the expression we got in (3.7) with the expected value received from
the auction for vi. ∫ vmax

0

vi(z)ai(z,~v)fi(z)dz

For this reason, we call φ(vi) the virtual welfare, and thus, we have found that the expectation of the
payment of bidder i is equivalent to the expectation of the virtual welfare for that bidder. In notation,
we have found that Evi [pi(~v)] = E[φ(vi) · ai(~v)]. Employing linearity of expectation, this tells us that our
expected revenue is actually equal to the expected virtual welfare, i.e. E~v[

∑
i pi(~v)] = E~v[

∑
i φi(~v)ai(~v)].

Our rule to maximize our expected revenue will then just be one which maximizes our expected virtual
welfare. Thus, we should award the item to the person with the highest virtual welfare valuation, UNLESS
all of them are negative (because, notably, this value can be negative).

We can ask if it is monotone, i.e. follows DSIC. It will be in the case that F is what we call regular.
To tease out what ”regular” means, let’s think about what it should be. Monotonicity means that if we
increase our valuation, we are more likely to be allocated the item. Based on our rule, this means that our

virtual welfare should also increase. This means that the rule is monotone if φ(v) = v − 1−F (v)
f(v) is increasing

in v, i.e. the definition of regular. This makes it so that if we award to the highest virtual valuation, we
are also awarding to the highest valuation. In short, if we have regular and independent Fis, we preserve
monotonicity.


	A Quick Review
	Knapsack Auctions
	The Knapsack Auction
	Knapsack, A Second Pass
	The Big Question

	Welfare vs. Revenue Maximization
	So, Why Welfare?
	Average Case/Bayesian Analysis


